
REALONE PLAYER SCRIPTING GUIDE
Last Update: 15 October 2002

RealNetworks, Inc.
PO Box 91123
Seattle, WA 98111-9223
U.S.A.

http://www.real.com
http://www.realnetworks.com

©2002 RealNetworks, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of RealNetworks, Inc.

Printed in the United States of America.

Helix, The Helix Logo, RBN, the Real "bubble" (logo), Real Broadcast Network, RealAudio, Real.com,
RealJukebox, RealMedia, RealNetworks, RealPlayer, RealOne, RealPresenter, RealSlideshow, RealSystem,
RealText, RealVideo, SureStream, and Surreal.FX Design are trademarks or registered trademarks of
RealNetworks, Inc.

Other product and corporate names may be trademarks or registered trademarks of their respective companies.

CONTENTS
INTRODUCTION 1

What is Helix? .. 1
System Components... 1
How to Download This Guide to Your Computer ... 2
How This Guide Is Organized .. 3
Conventions Used in this Guide... 4
Additional Documentation Resources ... 4
Technical Support .. 5
RealForum ... 5

PART I: SCRIPTING WITH REALONE PLAYER

1 REALONE PLAYER ENVIRONMENT 9

The Three-Pane Environment .. 9
The Media Playback Pane ..10
The Related Info Pane..11
The Media Browser Pane ...11

Now Playing List..12
Secondary Browsing Windows ...12

Controlling Interactions Between RealOne Player Panes.....................................12
Displaying HTML Pages Through Streaming Media12

Appending HTML URLs to Media URLs in a Ram File................................13
Embedding HTML URLs In a RealVideo or RealAudio Clip.........................13
Using SMIL to Display HTML Pages..14

Controlling Content Through the HTML Panes ...14
 Opening URLs with Simple Links ...15
Javascript and ActiveX Methods ...15

Using Javascript and ActiveX in the RealOne Player Environment16
Using Javascript Methods and Events..16
Using ActiveX Controls ..16

Using RealOne Player Methods ..17
Customizing Playback and Dynamically Opening URLs..................................17

Playing a Clip ..18
Using the Now Playing List...21
iii

RealOne Player Scripting Guide
Opening a URL in the Media Browser Pane...21
Caching URLs to Enhance Playback Performance......................................22
Handling Actions ..23
Setting the Background Color ..23

Retrieving RealOne Player Information ...24
Retrieving Version Information...24
Unpacking Version Information ...25
Getting Player Information ..27
Displaying Clip Information...27
Determining Installed Player Components ..28

Using RealOne Player Event Handlers ...29
Handling Media Clip Buffering...29
Determining the Current Time Position...30
Performing Tasks Before Playing a Clip ...30
Detecting a State Change ..31

2 REALONE PLAYER METHODS 33

AddToNowPlaying ..33
ClearNowPlaying...34
ComponentVersion ...35
GetClipInfo...36
GetPlayerState ..37
HandleAction..37
InstalledComponents ..39
OpenURLInPlayerBrowser..40
PlayClip ..40
PlayerProperty...42
PreloadURL ..43
RealPlayerVersion..43
SetVideoBackgroundColor...44

3 REALONE PLAYER EVENTS 45

RPOnBuffering..45
RPOnPositionLengthChange..45
RPOnPreload ..46
RPOnStateChange ..46

PART II: SCRIPTING WITH THE EMBEDDED PLAYER

4 EMBEDDED ENVIRONMENT 51

Understanding Presentation Embedding...51
Embedded Environment vs. RealOne Environment ..51
How Embedding Works...51
iv

Contents
The Embedded Player ..52
Backwards Compatibility ...52
SMIL in Embedded Presentations ...52
Media Preparation ..53

The Two Embedding Methods ...53
Javascript and VBScript..54

Methods...54
Callback Events ...54

Using the Netscape Plug-in ..55
Extending Embedded Controls Through Javascript ..55
Receiving Callbacks Through Javascript ..56

Handling Events in Netscape Navigator 6 or later56
Handling Events in Netscape Navigator 4.x ...58
Class Files ...58

Using the ActiveX Control ..59
Extending Embedded Controls Through VBScript..60
Receiving Callbacks Through VBScript ..60

Tag Parameters ...61
AUTOGOTOURL ..61
AUTOSTART...62
BACKGROUNDCOLOR ..62
CENTER ...63
CLASSID...64
CONSOLE ..64

Tips for Using Consoles ...65
Multiple Controls Example...65

CONTROLS ..66
HEIGHT ...66
ID...67
LOOP ..67
MAINTAINASPECT ..68
NAME ..69
NOJAVA ...69
NUMLOOP...70
PARAM...71
PREFETCH..71
REGION ...72
SCRIPTCALLBACKS ..73
SHUFFLE ..74
SRC ..74

Using the TYPE Parameter..74
Specifying a Source With the Netscape Plugin ...75
v

RealOne Player Scripting Guide
Specifying a Source with ActiveX ..77
TYPE ..77
WIDTH ..78

Embedded Controls ..78
All ..79
ControlPanel ..80
FFCtrl ...80
HomeCtrl ...80
ImageWindow ..81
InfoPanel ..81
InfoVolumePanel...81
MuteCtrl...82
MuteVolume...82
PauseButton ...82
PlayButton (also PlayOnlyButton)...82
PositionField...83
PositionSlider..83
RWCtrl ...83
StatusBar..83
StatusField..84
StopButton...84
TACCtrl ..84
VolumeSlider ..85

5 EMBEDDED METHOD OVERVIEWS 87

Controlling Playback ...87
Obtaining Play State Information ...88
Specifying Control Attributes ...89
Seeking Through a Clip..90
Accessing Clip Title, Author, and Copyright Information90
Directing a Playlist in a Multi-clip Presentation ...91
Determining Live Broadcast ...92
Display User Interface Dialogs..92
Error Handling ..93
Setting the Display Size ..94
Controlling Audio ...94
Getting Network Information...95
Obtaining RealOne Player Version Information ...96
Event Handling ...97

Available Methods ..98
How Event Handling Works...98
vi

Contents
6 EMBEDDED PLAYER METHODS 99

CanPause..99
CanPlay ..99
CanStop ...100
DoGotoURL..100
DoNextEntry ...100
DoPause ...101
DoPlay..101
DoPrevEntry..101
DoStop...101
GetAuthor...101
GetAutoGoToURL...101
GetAutoStart...102
GetBackgroundColor...102
GetBandwidthAverage ...102
GetBandwidthCurrent ...102
GetBufferingTimeElapsed...103
GetBufferingTimeRemaining ..103
GetCanSeek ..103
GetCenter ...103
GetClipHeight ...103
GetClipWidth..104
GetConnectionBandwidth ...104
GetConsole ...104
GetConsoleEvents ...104
GetControls ..104
GetCopyright ..105
GetCurrentEntry ..105
GetDRMInfo ...105
GetDoubleSize ..106
GetEntryAbstract...106
GetEntryAuthor ...106
GetEntryCopyright...107
GetEntryTitle...107
GetFullScreen ..108
GetImageStatus...108
GetLastErrorMoreInfoURL ...108
GetLastErrorRMACode..108
GetLastErrorSeverity ..109
GetLastErrorUserCode...110
GetLastErrorUserString ..110
GetLastMessage ..110
vii

RealOne Player Scripting Guide
GetLastStatus ...110
GetLength...111
GetLiveState..111
GetLoop ...111
GetMaintainAspect ...111
GetMute ...111
GetNumEntries ...112
GetNumLoop..112
GetNumSources ..112
GetOriginalSize ...112
GetPacketsEarly ..113
GetPacketsLate ...113
GetPacketsMissing ..113
GetPacketsOutOfOrder ...113
GetPacketsReceived...113
GetPacketsTotal..114
GetPlayState ...114
GetPosition...114
GetPreFetch ..114
GetShowAbout ...115
GetShowPreferences ..115
GetShowStatistics ...115
GetShuffle...115
GetSource...115
GetSourceTransport ..116
GetStereoState ..116
GetTitle ..116
GetVersionInfo ..116
GetVolume..117
GetWantErrors..117
GetWantKeyboardEvents ...117
GetWantMouseEvents ...117
HasNextEntry..118
HasPrevEntry ..118
SetAuthor ...118
SetAutoGoToURL ...118
SetAutoStart ...119
SetBackgroundColor ...119
SetCanSeek...120
SetCenter..120
 SetConsole...121
SetConsoleEvents ..121
viii

Contents
SetControls ...122
SetCopyright ...122
SetDoubleSize ...122
SetFullScreen...123
SetImageStatus ...123
SetLoop ..123
SetMaintainAspect ..124
SetMute..124
SetNumLoop...124
SetOriginalSize ..125
SetPosition..125
SetPreFetch ...125
SetShowAbout ..126
SetShowPreferences...126
SetShowStatistics ..126
SetShuffle..127
SetSource..127
SetTitle ...127
SetVolume ..128
SetWantErrors...128
SetWantKeyboardEvents..128
SetWantMouseEvents ..129

7 EMBEDDED PLAYER CALLBACKS 131

OnAuthorChange ..131
OnBuffering ..131
OnClipClosed ...132
OnClipOpened..132
OnContacting ...133
OnCopyrightChange..133
OnErrorMessage ...133
OnGotoURL..134
OnKeyDown ...135
OnKeyPress ...135
OnKeyUp ..136
OnLButtonDown...136
OnLButtonUp ...137
OnMouseMove ...138
OnMuteChange ..138
OnPlayStateChange...138
OnPosLength ..139
OnPositionChange ..139
ix

RealOne Player Scripting Guide
OnPostSeek ..140
OnPreFetchComplete ..140
OnPreSeek ..140
OnPresentationClosed...141
OnPresentationOpened...141
OnRButtonDown..141
OnRButtonUp ..142
OnShowStatus ..142
OnStateChange...142
OnTitleChange..143
OnVolumeChange...143

GLOSSARY 145

INDEX 151
x

INTRODUCTION
This guide will help you to use Javascript or ActiveX in two areas.
First, it explains methods that you can use to coordinate streaming
media and HTML pages in the various RealOne Player panes.
Second, it shows how to use scripting to extend the functionality of
the embedded player, a variation of RealOne Player that enables
streaming media to play directly within a Web page.

Note: Although this guide shows you how to use Javascript and
ActiveX with RealOne Player, it assumes that you are already
familiar with these scripting technologies in general.

What is Helix?
Helix™ from RealNetworks is a universal digital media delivery platform. With
industry-leading performance, integrated content distribution, advertising,
user authentication, Web services support, and native delivery of RealMedia,
Windows Media, QuickTime, and MPEG-4, Helix from RealNetworks is a
robust digital media foundation that meets the needs of enterprises and
networking service providers.

System Components
You need the following tools to create and test your scripted presentation:

• RealOne Player

Use RealOne Player, available free at http://www.real.com, to test your
Javascript or ActiveX extensions. The RealOne Player installation includes
the Netscape plug-in and ActiveX control for embedded presentations.

• Helix Server
1

RealOne Player Scripting Guide
Helix Server streams clips to RealPlayer. The server is not necessary for
testing local playback of clips, but it is necessary for streaming
presentations over a network. The Helix Server Administration Guide is
available at the following Web address:

http://service.real.com/help/library/servers.html

• Software Development Kit (SDK)

The SDK is not necessary for using RealOne Player’s scriptable playback
features. But it is required for advanced programming tasks, such as
building a new client interface on top of the RealOne Player core. A
knowledge of C++ programming is required to use the SDK. Register for
and download the SDK from this Web page:

http://proforma.real.com/rnforms/resources/server/realsystemsdk/
index.html

How to Download This Guide to Your Computer
RealNetworks makes this guide available in the following formats for
download to your computer:

• The HTML+Javascript version is available as a single, zipped archive that
includes samples that you can play in RealOne Player. You can read this
version with Netscape Navigator or Microsoft Internet Explorer.

• The HTML Help version is available as a single .chm file for Windows 98
and later operating systems. It is identical to the HTML+Javascript
version, except that it does not contain any sample files. The HTML Help
version is smaller in size than the HTML+Javascript version, and it
includes a search function.

• An Adobe Acrobat (PDF) version includes page numbers in cross-
references, making it more useful than the HTML versions when printed.
You can download the free Acrobat viewer from Adobe’s Web site at
http://www.adobe.com/products/acrobat/readstep.html.

All of the online versions of this guide are available for individual download
from RealNetworks’ Technical Support Web site at:

http://service.real.com/help/library/encoders.html
2

 Introduction
How This Guide Is Organized

Part I: Scripting with RealOne Player

The chapters in this section explain how to use Javascript and ActiveX in the
RealOne Player environment, in which RealOne Player launches as a separate
application.

Chapter 1: RealOne Player Environment

This chapter explains the RealOne Player environment, covering the three-
pane design. It introduces you to the variety of authoring methods you can
use, and explains the functional areas in which you can use Javascript or
ActiveX.

Chapter 2: RealOne Player Methods

This chapter lists the Javascript and ActiveX methods that you can use to
control playback in the RealOne Player environment.

Chapter 3: RealOne Player Events

Refer to this chapter for information about the Javascript and ActiveX event
handlers that provide information about RealOne Player activity.

Part II: Scripting with the Embedded Player

The chapters in this section explain how to use Javascript and VBScript in the
embedded environment, in which RealOne Player functions as a browser
helper application, but does not launch as a separate application.

Chapter 4: Embedded Environment

This chapter provides an overview of the embedded player, with descriptions
of the <EMBED> and <OBJECT> tags used to embed presentations.

Chapter 5: Embedded Method Overviews

Read this chapter for an overview of the scripting methods available when you
embed a presentation in a Web page.

Chapter 6: Embedded Player Methods

This chapter provides complete descriptions of all the embedded methods you
can use to control an embedded presentation.

Chapter 7: Embedded Player Callbacks

This chapter lists all the callback methods that return information about the
embedded presentation.
3

RealOne Player Scripting Guide
Conventions Used in this Guide
The following table explains the typographical conventions used in this guide.

Additional Documentation Resources
In addition to this guide, you may need the following resources, which are
available for download at http://service.real.com/help/library/
encoders.html:

• Helix Producer User’s Guide

This user’s guide gives you the step-by-step instructions for running Helix
Producer™, which turns audio and video files into streaming RealAudio®
and RealVideo® clips. An online version of this guide is available through
the Helix Producer Help menu.

• RealNetworks Production Guide

This guide is the main reference manual for streaming media production.
Refer to it for instructions and tips on media production, as well as for

Notational Conventions

Convention Meaning

emphasis Bold text is used for in-line headings, user-interface
elements, URLs, and e-mail addresses.

terminology Italic text is used for technical terms being introduced,
and to lend emphasis to generic English words or
phrases.

syntax This font is used for fragments or complete lines of
programming syntax (markup).

syntax emphasis Bold syntax character formatting is used for program
names and to emphasize specific syntax elements.

variables Italic syntax character formatting denotes variables
within fragments or complete lines of syntax.

[options] Square brackets indicate values you may or may not need
to use. As a rule, when you use these optional values, you
do not include the brackets themselves.

choice 1|choice 2 Vertical lines, or “pipes,” separate values you can choose
between.

... Ellipses indicate nonessential information omitted from
examples.
4

 Introduction
complete information about using SMIL 2.0, RealText, and other clip
types.

• Introduction to Streaming Media with RealOne Player

This guide provides a simple, streamlined introduction to RealOne Player
production techniques. For new users, it provides basic information about
streaming media, clip-encoded URLs, Ram files, and SMIL 2.0.

Technical Support
To reach RealNetworks’ Technical Support, please fill out the form at:

• http://forms.real.com/service/techsupport/contact.html

The information you provide in this form will help Technical Support
personnel respond promptly.

RealForum
RealNetworks also encourages you to join RealForum, an e-mail discussion
group about RealNetworks products where developers and content producers
post tips and ask for assistance. RealNetworks employees monitor the
postings and offer suggestions as appropriate. You can sign up for RealForum
by connecting to http://realforum.real.com/ and clicking on New user.
5

RealOne Player Scripting Guide
6

P A R T

I

Part I: SCRIPTING WITH REALONE PLAYER
The following chapters explain how to use Javascript and
ActiveX controls when creating presentations that play in the
RealOne Player native interface.

C H A P T E R

1

 Chapter 1: REALONE PLAYER ENVIRONMENT
This chapter introduces you to the RealOne Player media and
browsing environment, explaining the various authoring techniques
you can use to create compelling media presentations. It also covers
the functional areas in which you can use Javascript or ActiveX to
create innovative Web presentations.

The Three-Pane Environment
RealOne Player integrates streaming media with HTML pages simply and
effectively. Because previous versions of RealPlayer did not natively display
HTML pages, linked pages opened in the viewer’s default Web browser, which
split the presentation between separate applications. RealOne Player closes
this divide, benefitting both the viewer, who does not have to switch between
applications to watch an integrated presentation, and the presentation
author, who can more easily coordinate streaming media with Web pages.

As with past RealPlayers, you can still embed streaming media in any Web page
that viewers display in their favorite Web browsers. Although embedding is a
widely used means of integrating streaming media with HTML content, the
required embedding markup can be cumbersome. With RealOne Player, you
can keep your streaming media and HTML pages separate, coordinating the
two with simple production techniques. This reduces the work required to
stream media and display HTML pages simultaneously.

The following figure illustrates the three-pane environment of RealOne
Player, which is based on the metaphor of “play/more/explore.” Here, the
Media Playback pane plays streamed or downloaded clips. The Related Info
pane gives the viewer more information about the presentation. And the
detachable Media Browser pane lets the viewer explore the World Wide Web.
This design gives you one pane for playing media, one pane for displaying
small HTML pages related to the media, and one pane for showing large Web
pages, such as your home page.
9

RealOne Player Scripting Guide
RealOne Player Three-Pane Environment with a Secondary Browsing Window

For More Information: The presentation planning chapter of
RealNetworks Production Guide contains a more in-depth
overview of the RealOne Player panes.

The Media Playback Pane

The media playback pane hosts media clips and includes buttons for play,
pause, rewind, volume control, and so on. Any streaming or downloaded
media playable in RealOne Player can display in this pane. This includes the
core RealOne Player clip types and markup languages:

• RealAudio® for audio

• RealVideo® for video

• RealText® for timed text

Media Playback Pane:
● Audio ● Animation ● SMIL
● Video ● RealPix ● RealText

Related Info Pane:
● HTML ● Javascript
● Other Web Technologies

Secondary
Browsing Window:
● HTML ● Javascript
● Other Web Technologies

Control Panel

Media Browser Pane:
● HTML ● Javascript
● Other Web Technologies

Resize Handle
10

CHAPTER 1: RealOne Player Environment
• RealPix™ for still-image slideshows

• Macromedia Flash for animation

• SMIL for creating an integrated presentation from multiple clips

In addition, RealOne Player can play many other media types, including
MPEG audio and video.

The Related Info Pane

The related info pane, which is also called the “context pane,” appears to the
right of the media playback pane. It’s designed to display small HTML pages
that supplement media clips. These pages might contain album cover art,
copyright information, advertisements, and so on. Although using the related
info pane is not required, displaying supplemental HTML pages in this pane
greatly enhances the viewing experience. The related info pane can display any
HTML page content supported by Microsoft Internet Explorer version 4.

Because the media playback and related info panes are separate, you can easily
open multiple HTML pages as a presentation plays, displaying each page at a
specific point in the media timeline. You can thereby update the related info
pane simply by opening a new HTML page. RealOne Player thereby lets you
focus on your media, and display any number of supplemental HTML pages
by using simple production techniques.

The Media Browser Pane

The media browser pane can attach to, or detach from, the media playback
pane and related info pane. When attached, it appears below the two other
panes. Detached, it appears as a stand-alone window that the viewer can close
independently of the media playback and related info panes. Sending an
HTML page URL to a closed media browser pane reopens the pane, however.

Through the media browser pane, RealOne Player users can surf the Web, play
CDs, access their personal media libraries, transfer clips to portable players,
and so on. Presentation authors can also use this pane to display Web pages
associated with a streaming presentation. The pane can display any content
supported in Microsoft Internet Explorer version 4, including Javascript. You
might use this pane to display your home page after a media presentation
plays, for example.
11

RealOne Player Scripting Guide
Now Playing List

In the left side of the media browser pane, viewers can display a clickable “Now
Playing” list. When the viewer plays a streaming media clip or presentation,
the clip or presentation title displays in this list. Additionally, the viewer can
build a clip list by dragging media links from an HTML page displayed in the
related info or media browser pane.

RealOne Player ‘Now Playing’ List

Secondary Browsing Windows

Like most Web browsers, RealOne Player can display any number of additional
browsing windows, which are always detached from the three-pane
environment. You can display Web pages associated with your presentation in
secondary browsing windows, for example. Displaying full Web pages in the
media browser pane is preferable in most cases, though, because many viewers
are likely to have that pane already attached to the media playback and related
info panes. Additionally, only the media browser pane includes the “Now
Playing” list.

Controlling Interactions Between RealOne Player Panes
RealOne Player supports a variety of authoring languages and techniques that
allow content in one pane to control content in another pane. The following
sections describe these languages and techniques, helping you to decide how
to create a presentation based on how you want the presentation to function.

Displaying HTML Pages Through Streaming Media

With your streaming media, you can use three techniques to open URLs in the
related info or media browser pane. Although these techniques do not involve
scripting, they are compatible with the scripting methods covered later in this
12

CHAPTER 1: RealOne Player Environment
guide. They allow you to create “media-driven” presentations, in which
supplemental information displays in the HTML panes based on the media
timeline, or viewer interaction with media clips.

Note: Although RealOne Player can play proprietary formats
used by other media players, such as Windows Media and
QuickTime, it does not support the use of a Ram file or SMIL
with these formats. When streaming one of these formats to
RealOne Player, you must author presentations using the
markup conventions supported by Windows Media Player or
QuickTime Player, respectively.

Appending HTML URLs to Media URLs in a Ram File

You typically launch media clips that play in RealOne Player with a Ram file,
which uses the extension .ram. The plain text Ram file, which you can link to
any Web page with a standard <a href> tag, launches RealOne Player, and gives
it the full HTTP or RTSP URL to a media clip or SMIL presentation. Within
the Ram file, you can append URLs that open HTML pages in the related info
or media browser pane. This Ram file method is easy to use, and is well-suited
for simple presentations, such as a single RealVideo clip that displays an
HTML page as it plays.

For More Information: For full information about the Ram file
syntax, see the presentation delivery chapter of the
RealNetworks Production Guide. Introduction to Streaming Media
with RealOne Player also covers this topic in its Ram file
chapter.

Embedding HTML URLs In a RealVideo or RealAudio Clip

When you create a RealVideo or RealAudio clip with Helix Producer, you can
write an events file that defines one or more URLs that open in a RealOne
Player HTML pane at certain points as the clip plays. You then use a utility
that embeds the events file into the clip. Whenever you stream the clip, the
encoded URLs open automatically. This technique works only with RealAudio
and RealVideo clips. Because it encodes URLs directly into the clip, it is not
recommended if you want the HTML pages associated with clips to change
over time, or you want to stream the clip without opening the URLs.
13

RealOne Player Scripting Guide
For More Information: For information about merging an events
file with a clip through the rmevents.exe utility, see Introduction
to Streaming Media with RealOne Player.

Using SMIL to Display HTML Pages

To lay out and synchronize multiple media clips, you use Synchronized
Multimedia Integration Language (SMIL) to create simple to highly complex
media presentations. A SMIL presentation always plays in the media playback
pane, but it can also open HTML pages in the other panes. Using SMIL gives
you far more control over HTML display than using a Ram file or encoding
URLs directly into clips. The following are some of the capabilities that SMIL
gives you in the RealOne Player environment:

• Open any number of HTML pages automatically at any point.

• Open HTML pages interactively, such as when the viewer clicks a graphic
image displayed in the media playback pane.

• Use a powerful timing model to define exactly when HTML pages open.
For example, SMIL lets you open a page whenever a clip finishes playing.
You do not need to know how long the clip lasts.

• Manage bandwidth for complex presentations. SMIL lets you “prefetch”
clip and HTML page data before the pages display.

• Display different HTML pages based on the viewer’s preferred language,
available bandwidth, monitor color depth, or many other criteria.

Note: RealOne Player supports both SMIL 1.0 and SMIL 2.0.
Only SMIL 2.0 lets you open URLs automatically in the
RealOne Player HTML panes, though.

For More Information: For full information about SMIL and
RealOne Player, see RealNetworks Production Guide. For a basic
introduction to SMIL, see Introduction to Streaming Media with
RealOne Player.

Controlling Content Through the HTML Panes

Through HTML pages displaying in the related info or media browser, you can
control the media displaying in the media playback pane, as well as open new
HTML pages. These methods, which you can mix with the media-based
techniques described above, allow you to create “user-driven” presentations, in
14

CHAPTER 1: RealOne Player Environment
which clips and supplemental information display according to viewer
interaction within the HTML panes.

 Opening URLs with Simple Links

Because the related info or media browser pane display any HTML content,
the most basic way to control the presentation is to add simple hypertext links
in the form <a href> to the HTML pages that display within these windows:

• A simple HTML hypertext link can open a new page in the media browser
pane from the related info pane. You simply need to add the correct target
attribute to the <a href> tag:

Any other target name will open the HTML page in a secondary window
that is detached from the basic three-pane environment. You should not
attempt to open an HTML page in the related info pane with a simple link
in the media browser pane, however, because the related info pane URL
requires sizing information that you cannot pass in the link. The
Javascript/ActiveX methods let you pass this information, though.

• If you link to a Ram file with a simple <a href> link, the clip or SMIL
presentation given in the Ram file URL automatically plays in the media
playback pane. You do not need to use any additional pane targeting
method.

For More Information: For full information about the Ram file
syntax, see the presentation delivery chapter of the
RealNetworks Production Guide. Introduction to Streaming Media
with RealOne Player also covers this topic in its Ram file
chapter.

Tip: To avoid a file downloading dialog, you can use the
Javascript/ActiveX methods for playing clips when the viewer
clicks certain links.

Javascript and ActiveX Methods

RealOne Player supports several methods that work with both Javascript and
ActiveX. These give you the most control over the presentation through the
HTML pages displaying in the related info or media browser pane. The
remainder of this chapter describes how to use these methods.
15

RealOne Player Scripting Guide
Using Javascript and ActiveX in the RealOne Player Environment
The Javascript and ActiveX methods available in the RealOne environment are
superior to simple hypertext links for opening media in the media playback
pane, or for displaying HTML pages. Additionally, these methods let you build
an interactive application that lets viewers perform functions such as adding
clips to the “Now Playing” list, adding clips to the favorites list, and displaying
RealOne Player dialog boxes.

Note: These extensions are customized for the RealOne Player
media environment, and will not work in external Web pages.
In addition, the environment itself depends upon the client-
installed version of Internet Explorer. RealOne Player requires
Internet Explorer v4.0 or later to run optimally.

The RealOne Player environment can be accessed from within the player itself,
or from Web pages external to the player. Use the Javascript methods and
events to perform functions from within the player environment. Use the
RealOne Player ActiveX control to provide content to the RealOne Player
environment from Web pages external to the player.

Tip: To see sample files, get the HTML+Javascript version of
this guide as described in “How to Download This Guide to
Your Computer” on page 2, and view this page.

Using Javascript Methods and Events

To use the available Javascript methods and events, you must declare them in
the script section of a Web page displayed in the media browser pane or the
related info pane.

When using the Javascript methods and events from within the RealOne
Player environment, all methods are in the “external” container of the
document object model (DOM), that is, they are appended to
window.parent.external. Therefore, a call to PlayClip in RealOne Player would
look like the following:

window.parent.external.PlayClip(...)

Using ActiveX Controls

The ActiveX controls provided with RealOne Player are similar in scope to the
Javascript methods and events, with some limitations, such as no ability to
16

CHAPTER 1: RealOne Player Environment
preload URLs. However, these controls let you target and, to a great degree,
control RealOne Player from an external browser as you would from within
the RealOne Player environment. To use the ActiveX control, declare it in the
body of your Web page with the following class ID:

CLSID:FDC7A535-4070-4B92-A0EA-D9994BCC0DC5

for example:

<OBJECT ID="RealOneActiveXObject" WIDTH=0 HEIGHT=0
CLASSID="CLSID:FDC7A535-4070-4B92-A0EA-D9994BCC0DC5">
</OBJECT>

In script code, you can then call methods on this object using its object ID:

RealOneActiveXObject.PlayClip(…)

Using RealOne Player Methods
The RealOne Player methods provide a means of directly accessing the player
and modifying content through your web page. These methods are broken
down into basically two categories, those that customize playback and
dynamically open URLs, and those that retrieve information.

Customizing Playback and Dynamically Opening URLs

The RealOne Player environment can synchronize the display of associated
URLs with a playing clip. Several methods allow you to play a clip in the media
browser pane and simultaneously display a URL in the related info pane when
playback begins. In addition, you can specify the height and width of the
related info pane as you want it to appear when the clip plays.

Specifying a URL for the related info pane is optional in all of these methods.
If you do not specify a URL with the related info pane as the target, the
specified clip will play in the media playback pane and the related info pane
will not open. If a URL is specified without a target listed, it will automatically
display in the media browser pane.
17

RealOne Player Scripting Guide
Because the related info pane is cleared each time a new presentation begins,
the related info pane is automatically closed by default if you play a new
presentation without specifying a new related info pane.

Playing a Clip

Because of the diversity of the RealOne Player environment, there are
numerous ways of playing a clip. Clips can be played from an existing web
page, or you can devise elaborate combinations of URLs and related
information that can be displayed while the clip plays.

The simplest means of playing a clip in the RealOne Player enviroment is to
add a single Javascript line to a web page that is to be run in the player’s media
browser pane or related info pane. This line automatically begins playing a clip
you have selected. For example, the following line would play the welcome.rm
file:

window.parent.external.PlayClip("rtsp://helixserver.example.com/welcome.rm")

Note: The zipped HTML+Javascript version of this guide,
which you can download from http://service.real.com/help/
library/encoders.html, contains several sample files. Because
some of these files use absolute, local paths, you must copy the
entire samples directory to your C: drive (c:\samples) before
playing them.

You can also open the RealOne Player and play a clip from an external web
page. To do this, you must use an ActiveX control that provides a class
identifier that lets you target and control the RealOne Player (using an
ActiveX control is described in “Using ActiveX Controls” on page 16). For

Methods for Custom Playback and Opening URLs

Method Description Reference

AddToNowPlaying Adds a clip URL to the clip list. page 33

ClearNowPlaying Clears the current playlist. page 34

HandleAction Performs a specified action. page 37

OpenURLInPlayerBrowser Opens a URL in the media browser pane. page 40

PlayClip Sends a URL to the media playback pane. page 40

PreLoadURL Called before playback begins. page 43

SetVideoBackgroundColor Sets the video background color to the
specified value.

page 44
18

CHAPTER 1: RealOne Player Environment
example, the following line in an external web page would play the welcome.rm
file in RealOne Player:

RealOneActiveXObject.PlayClip("rtsp://helixserver.example.com/welcome.rm")

The PlayClip method also contains many options for customizing your
presentation in the RealOne Player environment. Each of these options can be
used indivdually, or in any combination, whatever is required to enhance your
presentation.

While your clip is playing, the status display at the top of the RealOne Player
contains information provided with each clip that is played. This information
can also be obtained using the GetClipInfo method. In some cases, you might
want to replace this material with alternative information. The PlayClip
method contains a set of optional parameters that modify the information
used in the clip. For example, the following code would change the title and
artist name:

// Play a clip and show new status display
function clipPlay() {
 window.parent.external.PlayClip(
 "rtsp://helixserver.example.com/welcome.rm",
 "Title=Glorious Day|Artist name=Me Alone")
}

Note: For more information on using the GetClipInfo method
to display all of the information associated with a clip, see
“Displaying Clip Information” on page 27

RealOne Player is more than just a player. The RealOne Player environment
can also display information related to the clip being played, or let you browse
a web page in the media browser. All of these capabilities can be controlled
while playing a clip. The PlayClip method includes parameters to add content
to the related info pane, which appears beside the current playing clip, and
browsing capabilitis in the media browser pane. Both of these capabilities can
be used individually, or all at once. For example, the following code displays
information in the related info pane, and displays content from a URL in the
media browser pane:
19

RealOne Player Scripting Guide
// Play a clip, display related info, and load URL in media browser
function clipPlay() {
 window.parent.external.PlayClip(
 "rtsp://helixserver.example.com/welcome.rm","",
 "http://www.example.com/welcome.htm", 300, 220,
 "http://www.real.com", "_rpbrowser")
}

The size of the related info pane is automatically set by the size of the media
clip being played in the media playback pane. However, you can alter the size
of the related info pane (along with the height of the media playback pane) by
setting the width and height parameters in the PlayClip method, as was done in
the previous example.

The previous example also displays the www.real.com web site in the media
browser pane. If you would prefer to open a separate window for this URL,
replace the _rpbrowser string in the previous example with any other target
name, and the URL will be displayed in a secondary window.

Once you have opened a URL in the related info pane, you can continue to use
the information supplied by that URL during playback of other clips. A
reserved value, _keep, preserves the last URL loaded in the related info pane
without having to reload the URL when another clip begins playing.

// Play a clip and keep previous related info URL
function clipPlay() {
 window.parent.external.PlayClip(
 "rtsp://helixserver.example.com/welcome.rm","",
 "_keep", 300, 220)
}

The next sample shows how to play a clip in the media playback pane and
display a URL in the media browser pane, but because no related information
is supplied, no related info pane is displayed:

// Play a clip and load URL in media browser
function clipPlay() {
 window.parent.external.PlayClip(
 "rtsp://helixserver.example.com/welcome.rm","",
 "", 0, 0, "http://www.real.com", "_rpbrowser")
}

The RealOne Player media browser pane contains a "Now Playing" list on the
left side. When you play a clip using the PlayClip method, you can specify
whether the clip is added to the "Now Playing" list. By default, the clip is
20

CHAPTER 1: RealOne Player Environment
added. To prevent the clip from being added, set the bnow_playing parameter
to false, as shown in the following example:

// Play a clip, don’t add to Now Playing list
function clipPlay() {
 window.parent.external.PlayClip(
 "rtsp://helixserver.example.com/welcome.rm","",
 "", 0, 0, "", "", false)
}

The PlayClip method contains one required parameter and seven optional
parameters. You do not need to type out all of the optional parameters when
you use this method. However, if any optional parameter is used, all optional
parameters up to the one being used must contain an entry. For a string
parameter, this entry must be a pair of empty quotes. For the integer width
and height parameters, you must enter a zero (0) when they are not used.

Using the Now Playing List

The Now Playing list, located on the left side of the media browser pane,
shows what clips are currently queued to play and what clips have most
recently been played. The AddToNowPlaying method opens the Now Playing list
(if it is currently closed) and adds a clip to the play list. You can add multiple
clips to the play list using AddToNowPlaying as many times as required since this
method does not initiate playback. The only required parameter is the URL for
the clip to be added.

This method also contains several optional parameters for loading URLs and
displaying clip information. These optional parameters work in the same way
as the optional parameters in the PlayClip method. For more information on
these optional parameters, see “Playing a Clip” on page 18.

It is a good idea to clear the Now Playing list of any clips that may already be
listed before adding any new clips. That way you can create a list that does not
contain any clips that may have prevously been included in the clip list. To
clear the clip list in the Now Playing list, use the ClearNowPlaying method. This
method removes all of the clips currently listed in the Now Playing list.

parent.window.external.ClearNowPlaying()

Opening a URL in the Media Browser Pane

The PlayClip method lets you open a URL in the media browser pane whenever
you start playing a clip in the media playback pane. However, you might want
to open a URL in the media browser pane before or after the clip begins
21

RealOne Player Scripting Guide
playing. To do this, use the OpenURLInPlayerBrowser method. For example, the
following code demonstrates how to open a URL in the media browser pane
five seconds after a clip has begun playing:

// Open URL five seconds into playback
function RPOnPositionLengthChange(position, length)
{
 if (position == 5000) {
 parent.window.external.OpenURLInPlayerBrowser("http://www.real.com")
 }
}

Caching URLs to Enhance Playback Performance

RealOne Player provides an event handler (RPOnPreLoad) and method
(PreloadURL) to cache URLs before a presentation begins playing. While not
required, caching URLs locally improves playback quality because RealOne
Player does not have to sacrifice bandwidth to retrieve the URLs from a remote
location during playback.

The PreloadURL method can be used at any time (even outside of an
RPOnPreload event) to load a URL in the browser’s cache. However, care should
be taken when using this outside of the RPOnPreload event in that referencing a
Web page during content playback could appreciably slow the bandwidth
from the media stream. You could, for example, use the GetPlayerState method
to determine if the user is currently playing a clip and, if not, begin preloading
more URLs.

Note: You should test your presentation when preloading
numerous URLs to ensure that playback bandwidth is not
adversely affected.

The following example shows one possible method of using the PreloadURL
method to load URLs in the browser cache before media playback begins:

// Preload web pages before media playback begins.
function RPOnPreload()
{
 parent.window.external.PreloadURL("http://server/slide1.html")
 parent.window.external.PreloadURL("http://server/slide2.html")
 parent.window.external.PreloadURL("http://server/slide3.html")
}

22

CHAPTER 1: RealOne Player Environment
Handling Actions

The RealOne Player environment includes a method that handles a variety of
actions. The HandleAction method provides a means of moving the user about
in the RealOne Player environment, opening various dialogs, and navigating
to specific URLs in the media browser pane or a secondary window.

During your presentation, you might want to move the user around various
tabs in the media browser pane, or open the "Now Playing" list to display the
clips that are set to play. The HandleAction method can open the Web, My
Library, CD, Devices, and Radio panes to display whatever information the
user requires. In addition, the HandleAction method can open the "Now
Playing" list to display the current clip list. For example, the following line
opens the My Library tab in the media browser pane:

parent.window.external.HandleAction("MyLibrary")

In some cases, you may need the display the player’s Preferences or Equalizer
dialogs. The HandleAction method can open either of these dialog boxes. In
addition, you can open the Preferences dialog box to any individual category
or page. For example, the following line opens the Preferences dialog box in
the Playback Settings page of the Connection category:

parent.window.external.HandleAction("ShowPreferences(Connection,Playback Settings)")

The HandleAction method also provides a means of navigating to a specified
URL, which is displayed in either the media browser pane, or a secondary
pane. For example, the following line opens a URL in a secondary window:

parent.window.external.HandleAction("NavigateToURL(www.real.com, '_rpexternal')")

You can also use the HandleAction method to show or hide the artist
information in the current clip. For example, the following line hides the
artist information in the current clip:

parent.window.external.HandleAction("ShowArtistInfo(0)")

Setting the Background Color

By default, the background color for the media playback pane is set to black. If
the media playback pane size is changed so that it is larger than the media
playing in the pane, the background color shows around the edges of the
media.

To change the background color, use the SetVideoBackgroundColor method.
This method takes a string value consisting of one of two formats. The first
format type consists of a sting containing the RGB hexadecimal value of the
23

RealOne Player Scripting Guide
color you want to use in the form #RRGGBB, where RR represents the red value,
GG represents the green value, and BB represents the blue value. Each of the
color values can be set from 00 to FF in hexadecimal. For example, to set the
background color to red:

parent.window.external.SetVideoBackgroundColor("#FF0000")

The second format type consists of a string containing the red, green, and blue
values in an array of the form rgb(x,x,x), where x is a decimal value from 0 to
255. For example, to set the background color to blue:

parent.window.external.SetVideoBackgroundColor("rgb(0,0,255)")

Retrieving RealOne Player Information

The following table summarizes the methods that you can use to retrieve
RealOne Player information.

Retrieving Version Information

If you are preparing new content for your web page, it might be necessary to
determine the version of the user’s player and its components before
attempting to run updated material. RealOne Player contains two methods
that retrieve information about the player version and about individual
components of the player.

The RealPlayerVersion method returns the version information about the user’s
installed player as an integer value in a packed format. You can use this
information to determine if the user is running a version of the player that is

Methods for Retrieving RealOne Player Information

Method Description Reference

ComponentVersion Retrieves the version of an updated component. page 35

GetClipInfo Returns desired clip information as a string. page 36

GetPlayerState Returns the player’s current state. page 37

InstalledComponents Retrieves a list of DLLs that have been installed
by RealOne Player.

page 39

PlayerProperty Retrieves the value of a specified RealOne Player
property, such as the language preference or the
operating system name.

page 42

RealPlayerVersion Detects the RealOne Player version and returns
it in packed form.

page 43
24

CHAPTER 1: RealOne Player Environment
capable of playing back your web content. If not, you can either run only those
parts of your content that the user’s player is capable of running, or you can
advise the user to update their player. For example, the following code
retrieves the RealOne Player version number and prints it on the browser:

// Get RealOne Player version
function playerVersion() {
 var vers=window.parent.external.RealPlayerVersion()
 document.write("The version of RealPlayer is " + vers)
}

Note: Currently, the RealPlayerVersion method must be used
without parenthesis at the end of the method name.

Sometimes it may be necessary to get the version information for an
individual component in the player. If an individual codec has been updated,
for instance to a new build your code requires, but the version of RealOne
Player remains the same, use the ComponentVersion method to get the version
information for the individual component. This method takes as an argument
the individual codec version for which you are trying to retrieve information.
For example, the following code demonstrates how to retrieve the version
information for the Flash 6.0 codec:

// Get packed component version number
function CompVersion() {
 var vers=RealOneActiveXObject.ComponentVersion("Flash:6.0")
 document.write("The Flash plugin version is " + vers)
}

The version information returned by ComponentVersion and RealPlayerVersion is
an integer value in a packed format. To unpack the information into a
readable format, use the UnpackVersionNumber function discussed in
“Unpacking Version Information” on page 25.

Unpacking Version Information

Both the ComponentVersion and RealPlayerVersion methods return version
information as an integer value in a packed format. This integer value is useful
if you are going to compare other version information against the value
returned by these methods.

The version information can also be viewed as an unpacked string. This
unpacked string provides the version information in a readable format
composed of the major version, minor version, and build number, with each
25

RealOne Player Scripting Guide
number separated by a period. This format is consistant with the player’s
version information as presented in the About RealOne Player dialog box. For
example:

6.0.10.290

The Javascript version of the UnpackVersionNumber function listed below takes
the integer value returned by either ComponentVersion or RealPlayerVersion and
unpacks it into a readable string. The entire UnpackVersionNumber function
must be used as shown below in any page or script to invoke it properly.

function UnpackVersionNumber(n)
 {
 return "" + (n >> 28) + "." +
 ((n & 0xFF00000) >> 20) + "." +
 ((n & 0xFF000) >> 12) + "." +
 (n & 0xFFF);
 }

You can also use the UnpackVersionNumber function in VBScript with the
following code:

Function UnpackVersionNumber(n)
 UnpackVersionNumber = (((n And &HF0000000) / &H10000000) & "." & _
 ((n And &HFF00000) / &H100000) & "." & _
 ((n And &HFF000) / &H1000) & "." & _
 (n And &HFFF))
End Function

The following Javascript example demonstrates how to use the
UnpackVersionNumber function. The first part of the example declares the
function as part of the page, though this could be done in an external script as
well. The second part invokes the function on a version number retrieved
using RealPlayerVersion, then assigns the resulting string to the variable
szPlayerVersion.

// Unpack the version number
function UnpackVersionNumber(n)
{
 return "" + (n >> 28) + "." + ((n & 0xFF00000) >> 20) + "." +
 ((n & 0xFF000) >> 12) + "." + (n & 0xFFF);
}
 ...
{

26

CHAPTER 1: RealOne Player Environment
 var nRPVersion = window.parent.external.RealPlayerVersion
{
 szPlayerVersion= UnpackVersionNumber(nRPVersion)
}

Getting Player Information

When the RealOne Player is installed on a user’s system, it saves a set of
properties that describe the user’s operating system, and information about
the player that was installed. You can retrieve this information using the
PlayerProperty method. The PlayerProperty method takes a single parameter
that describes the type of property for which you want information returned.
For example, the following code returns the user’s operating system, the
version of the player that is installed, and the bandwidth setting chosen by the
user:

// Get player property information
function getProperty() {
 document.write("Operating system: " +
 parent.write.external.PlayerProperty("OSNAME”) + "
")
 document.write("Product version: " +
 parent.write.external.PlayerProperty("PRODUCTVERSION") + "
")
 document.write("Player bandwidth: " +
 parent.write.external.PlayerProperty("BANDWIDTH"))
}

Displaying Clip Information

RealOne Player contains two methods that can retrieve information about the
clip in the clip in the media playback pane. The first, GetClipInfo, returns
information about the clip. The second, GetPlayerState, returns the current
state of the clip.

Clips loaded in the media playback pane usually contain a set of information
that describes the composition of the clip. Many clips, for instance, contain
the album name and the name of the artist. Other possible information
contained in the clip could be the genre of the clip, the language in which the
clip is recorded, the year the clip was recorded, and so on. Use the GetClipInfo
method to retrieve this information. The GetClipInfo method takes as an
argument the type of information you want returned, such as the author
name, and returns that information from the clip. For example, the following
code returns the album name and the name of the artist:
27

RealOne Player Scripting Guide
// Get the album name and artist
function getInfo() {
 document.write("Album name: " +
 parent.window.external.GetClipInfo("Album name")
 document.write("Artist name: " +
 parent.window.external.GetClipInfo("Artist name")
}

Once a clip is loaded in the media playback pane, you can retrieve the current
state of the clip. Once you get the state of the clip, you can use this
information to determine what actions you take. If the user is listening to the
clip, for instance, you could choose to add a new clip to the Now Playing list.
Use the GetPlayerState method to retrieve the state of the clip. The
GetPlayerState method can determine if the clip is stopped, contacting a URL,
buffering, playing, pausing, or seeking in the clip. For example, the following
code detects a change in the state of the playback, and displayes the new state:

// Get the new state
function getPlayerState() {
 document.write(“The player is currently “ +
 parent.window.external.GetPlayerState())
}

Determining Installed Player Components

Before you begin a presentation on RealOne Player, you should check to
ensure the player contains all of the components required to display your
work. The InstalledComponents method can be used to retrieve the list of DLLs
that are currently installed on the user’s player. This list can then be compared
to the required components for your presentation.

The following example shows how to check the player’s installed components.
The information returned by InstalledComponents includes the name of each
component, along with the version number of that component. The
component name and version number are separated by a colon (:), and each
component name and version number pair are separated by a pipe symbol
(|). This example takes the returned list of components and uses the pipe
symbol to parse each component to a separate line.

// Parse the installed components
function installComp(){
 var install=RealOneActiveXObject.InstalledComponents()
 document.write("The following components are currently installed:

")
 while(install.indexOf("|")>0){
 component = install.substring(0,install.indexOf("|"));
28

CHAPTER 1: RealOne Player Environment
 document.write(component + "
");
 install = install.substring(install.indexOf("|") + 1, install.length);
 };
 document.write(install)
}

Note: Currently, this method must be used without
parenthesis at the end of the method name.

Using RealOne Player Event Handlers
RealOne Player reports the events that occur within the application using a set
of predefined functions known as event handlers. You can use the event
handlers presented here on your Web page to intercept and interpret RealOne
Player events, such as capturing user interactions with the application
controls, or monitoring the progress of your presentation. The following table
summarizes the available events.

Handling Media Clip Buffering

The RPOnBuffering event handler returns information about the buffering
event while the media clip is buffering. In addition, it returns a value that
represents the percentage of buffering that has completed.

The following example displays in the current pane any buffering state that is
occurring, along with the percentage of buffering that has completed:

Events for Retrieving RealOne Player Information

Method or Event Name Description Reference

RPOnBuffering Called when RealOne Player buffers a clip. page 45

RPOnPositionLengthChange Called at regular intervals as the clip
position changes.

page 45

RPOnPreLoad Called before playback begins. page 46

RPOnStateChange Called when the RealOne Player state
changes.

page 46
29

RealOne Player Scripting Guide
// Display the current buffering state and percentage
function RPOnBuffering(flags, percent)
{
 buffer = "Buffering: " + flags + ", " + percent + "%
"
 document.write(buffer)
}

Determining the Current Time Position

Whenever a media clip is playing in the media playback pane, the position of
the clip is automatically updated every half second. You can use this
information to schedule events at a specific time during the clip, such as
loading URLs in the related info pane or the media browser pane.

The RPOnPositionLengthChange event handler returns the current time position
within the clip during playback, along with the total duration of the clip. The
current position is returned in as the number of milliseconds in half second
increments (that is 500 for the first half second, 1000 as the second half
second, and so on).

The following example displays a URL in the current pane after the clip has
played for five seconds:

// Synchronize HTML with your presentation
function RPOnPositionLengthChange(position, length)
{
 if (postion == 5000) {
 flag = 1
 document.location = "http://www.real.com"
 }
}

Performing Tasks Before Playing a Clip

Before you begin playing a clip, you can perform tasks that might affect the
bandwidth of the clip if the task was performed during playback. This is
especially important for users with a low-bandwidth connection, such as a
56K modem.

The RPOnPreload event handler processes events that occur before a clip is
played. For example, you could use this time to preload URLs destined for the
related info pane or the media browser pane. Preloading URLs allows for faster
display later on during media playback, especially when synchronizing URLs
with the media being played.
30

CHAPTER 1: RealOne Player Environment
An RPOnPreload event occurs whenever the player encounters a ?rpcontexturl
query string in a .RAM, .RM, or .SMI file. In general, the first HTML related info
URL should preload all the related info URLs used in the presentation. You
should test your presentation, however, to ensure the number of related info
URLs you are preloading does not delay the beginning of the playback too
long, and that the presentation works as expected.

The following example preloads two URLs that will be used later during
playback:

// Preload the required URLs
function RPOnPreload()
{
 window.parent.PreloadURL("http://www.real.com")
 window.parent.PreloadURL("http://service.real.com")
}

Detecting a State Change

Sometimes it might be necessary to determine the current state of the player.
For example, you might want to know if the user is currently playing back a
clip and, if so, you can add a clip to the Now Playing list rather than using the
PlayClip method, which would be more intrusive

The RPOnStateChange event handler returns the state of the clip being played
whenever the state changes. The value returned by this event handler is an
integer that indicates whether the clip has stopped, has started playing, has
been paused, and so on.

The following sample performs a specific task depending on the state that is
returned:

// Display the current state of the clip
function RPOnStateChange(newstate)
{
 var statestring=""
 switch(newstate) {
 case 0:
 statestring += "Stopped"
 break
 case 1:
 statestring += "Contacting"
 break
 case 2:
 statestring += "Buffering"
31

RealOne Player Scripting Guide
 break
 case 3:
 statestring += "Playing"
 break
 case 4:
 statestring += "Paused"
 break
 case 5:
 statestring += "Seeking"
 break
 default:
 break
 }
 document.write("The player is currently " + statestring)
}

32

C H A P T E R

2

 Chapter 2: REALONE PLAYER METHODS
This chapter provides a alphabetized reference to the methods you
can use in the RealOne Player environment. For an overview of the
methods, see “Using Javascript and ActiveX in the RealOne Player
Environment” on page 16.

AddToNowPlaying
Opens the "Now Playing" list and adds a URL to the clip list after the current
clip. Optionally, it displays an associated URL in the related info pane with the
specified height and width when the added clip plays, and a URL to the media
browser pane. Available as a Javascript extension and an ActiveX control.

AddToNowPlaying(url, clipinfo, related_info_url, width, height, media_browser_url,
target)

url
String containing the URL to add to the the RealOne Player clip list. This
parameter is required.

clipinfo
String of extra clip information, such as title, author, and so on. This
parameter contains a string of name-value pairs, <keyword=value>,
separated by pipes. This parameter is optional. Valid keywords for clipinfo
are:

• Album name

• Artist name

• CDNum

• Comments

• Genre

• Language
33

RealOne Player Scripting Guide
• Mood

• Preference

• Situation

• Title

• Year

Example:

"Title=XXX|Artist name=XXX|Album name=XXX|Genre=XXX;"

Note: Each keyword/value pair is separated by the pipe symbol
(|). For each entry to work correctly, you must ensure there
are no spaces before or after each pipe symbol.

related_info_url
String containing the URL to display in the related info pane when the
added clip plays. This parameter is optional.

width
Integer that specifies the width of the related info pane in pixels. This
parameter is not required, but its use is recommended. If no width is
specified, the width defaults to 320 pixels

height
Integer that specifies the height of the related info pane in pixels. This
parameter is not required, but its use is recommended. If no height is
specified, RealOne Player uses the height of the media presentation.

media_browser_url
String containing a URL to display in the URL designated by the target
parameter. This parameter is optional.

target
Optional string indicating the pane in which to open the URL given in the
media_browser_url parameter. If this string is set to _rpbrowser, the URL is
opened in the media browser pane. Any other target name displays the
URL in a secondary browsing window.

ClearNowPlaying
Clears the RealOne Player’s current playlist and stops any clips currently
playing. You should call this method before using any of the other methods to
34

CHAPTER 2: RealOne Player Methods
synchronize playback. Available as a Javascript extension and an ActiveX
control.

ClearNowPlaying()

Returns void.

Note: Currently, this method must be used without
parentheses at the end of the method name.

ComponentVersion
Returns the version of an updated component in packed form. Available as a
Javascript extension and an ActiveX control.

ComponentVersion(name)

name
The name of the component to be examined. This parameter must be
specified in the following format:

[name]:[major version].[minor version]

The following table identifies the possible values for component names.
The values are case-sensitive and must be entered exactly as they appear
below.

Component Names

Name Component

audp Extra audio plugin

DBCMpg1 MPEG video plugin

Flash Macromedia Flash plugin

GF GIF plugin (for backwards compatibility)

GFJP JPG plugin (for backwards compatibility)

imgp All image plugin (gif, jpg, png)

MP3PL MP3 Playlist plugin

MPGA MP3 Audio plugin

PNG PNG plugin (for backwards compatibility)

RA RealAudio

RealTxt RealText

RichFX RichFX plugin
 (Table Page 1 of 2)
35

RealOne Player Scripting Guide
Note: This list is not exhaustive because components are being
added to RealOne Player all the time. This list will be updated
as available, but you should contact RealNetworks if you have a
special need.

For example, use the following to check the version of the Flash 6.0
plugin:

window.parent.external.ComponentVersion(‘Flash:6.0’)

Returns a string that contains the version of the component in packed form.
This information could then be used to determine if the plugin meets the
minimum requirements to play a requested presentation. If not, an upgrade
request could be initiated.

To unpack this number into a more readable form, use the
UnpackVersionNumber function, described in “Unpacking Version Information”
on page 25, as follows:

UnpackVersionNumber(window.parent.external.ComponentVersion('RA:6.0'))

GetClipInfo
Retrieves the specified value of the clip information as authored by the media
provider in a string format. This method only works for clips launched from
HTML in the related info pane. Available as a Javascript extension.

GetClipInfo(property)

property
Specifies the requested information. One of the following:

• Album name

• Artist name

• CDNum

RPix RealPix

RV RealVideo

sdp Scalable Multi-cast plugin

vidp Extra video plugin

Component Names (continued)

Name Component

 (Table Page 2 of 2)
36

CHAPTER 2: RealOne Player Methods
• Comments

• Genre

• Language

• Mood

• Preference

• Situation

• Title

• Year

Returns a string suitable for insertion as part of the HTML in the related info
pane.

GetPlayerState
Gets the player’s current state. Available as a Javascript extension.

GetPlayerState()

Returns an integer that describes the player’s current state. One of the
following:

HandleAction
Performs a specified action. Available as a Javascript extension and an ActiveX
control.

HandleAction(action)

Value Description

0 Indicates the player is currently stopped.

1 Indicates the player is currently contacting.

2 Indicates the player is currently buffering.

3 Indicates the player is currently playing.

4 Indicates the player is currently paused.

5 Indicates the player is currently seeking.

6 Indicates the player is busy showing a modal dialog box.
37

RealOne Player Scripting Guide
action
The specific action to perform. One of the following:

The ShowPreferences action can take one of the following category and
page pairs:

Action Performs the Following

CD Opens the CD tab in the player.

MyDevices Opens the Devices tab in the player.

MyLibrary Opens the My Library tab in the player.

NavigateToURL(url, target) Opens the specified URL in the specified target
pane. The target pane can be defined as either
_rpbrowser or _rpexternal.

NowPlaying Opens the "Now Playing" list.

Radio Opens the Radio tab in the player.

ShowArtistInfo (show) Shows or hides the artist information for the
current clip. If show is set to 0, the artist
information is hidden. If show is set to 1, the
artist information is shown.

ShowEqualizer Brings up the player’s Equalizer dialog box.

ShowPreferences(category,
page)

Brings up the player’s Preferences dialog box to
the selected category and page. Category and
page combinations are described below.

Web Opens the Web tab in the player.

Category, Page Performs the Following

General,General Opens the Preferences dialog box to the
General category.

Connection,Connection Opens the Preferences dialog box to the main
Connection category.

Connection,Playback Settings Opens the Preferences dialog box to the
Playback Settings page of the Connection
category.

Connection,Internet Settings Opens the Preferences dialog box to the
Internet Settings page of the Connection
category.

Connection,Proxy Opens the Preferences dialog box to the Proxy
page of the Connection category.

 (Table Page 1 of 2)
38

CHAPTER 2: RealOne Player Methods
Note: Each of the category and page pairs must be capitalized
as shown. In addition, there cannot be a space between the
category and the comma, nor between the comma and the
page.

InstalledComponents
Returns a list of the DLLs and their associated version numbers installed by
RealOne Player. Available as a Javascript extension and an ActiveX control.

InstalledComponents()

Note: Currently, this method must be used without
parenthesis at the end of the method name.

Connection,Network Transports Opens the Preferences dialog box to the
Network Transports page of the Connection
category.

My Library,My Library Opens the Preferences dialog box to the My
Library category.

My Library,Advanced My Library Opens the Preferences dialog box to the
Advanced My Library page of the My Library
category.

CD,CD Opens the Preferences dialog box to the CD
category.

CD,Advanced CD Opens the Preferences dialog box to the
Advanced CD page of the CD category.

Devices,Devices Opens the Preferences dialog box to the
Devices category.

Accessories,Accessories Opens the Preferences dialog box to the
Accessories category.

Media Types,Media Types Opens the Preferences dialog box to the Media
Types category.

Content,Content Opens the Preferences dialog box to the
Content category.

Hardware,Hardware Opens the Preferences dialog box to the
Hardware category.

AutoUpdate,AutoUpdate Opens the Preferences dialog box to the
AutoUpdate category.

Category, Page Performs the Following

 (Table Page 2 of 2)
39

RealOne Player Scripting Guide
Returns a string containing the all of the DLLs installed by RealOne Player
and their associated version numbers. The component type and version
number are separated by a colon (:). Each DLL is separated by a pipe symbol
(|). The following example demonstrates a possible return value:

athdb:7.0.0.231|Update:7.0.0.960|ath:7.0.0.231|RNAdmin:0.1.0.548|MSG:7.0.0.552
|PNCRT:6.0.0.0|RMACore:6.0.9.138|vsrc:6.0.7.2119|DRMLite:6.0.8.1860|Player:6.0.1
0.319|Free:6.0.10.319|RA:6.0.9.145|RV:6.0.9.145|Flash:6.0.8.2144|Embed:6.0.8.14
13|RealTxt:6.0.7.2232|imgp:6.0.7.2225|PNG:6.0.7.2061|GF:6.0.7.2236|RPix:6.0.7.2
217|GFJP:6.0.7.2236

OpenURLInPlayerBrowser
Opens the specified URL in the media browser pane. Available as a Javascript
extension and an ActiveX control.

OpenURLInPlayerBrowser(url)

url
Specifies the URL to open in the media browser pane.

PlayClip
Plays a clip from the specified URL in the media playback pane. Optionally
sends a URL to the related info pane with the specified height and width. In
addition, a URL can be displayed in the media browser pane or a secondary
window. Available as a Javascript extension and an ActiveX control.

PlayClip(url, clipinfo, related_info_url, width, height, media_browser_url, target,
bnow_playing)

url
String containing the URL to play in the media playback pane. This
parameter is required.

clipinfo
String of extra clip information, such as title, author, and so on. This
parameter is entered as a string of name-value pairs, <keyword, value>,
separated by pipes. This parameter is optional. Valid keywords for this
parameter are:

• Album name

• Artist name

• CDNum
40

CHAPTER 2: RealOne Player Methods
• Comments

• Genre

• Language

• Mood

• Preference

• Situation

• Title

• Year

The following example demonstrates a possible entry for the clipinfo
parameter:

"Title=XXX|Artist name=XXX|Album name=XXX|Genre=XXX;"

Note: Each keyword/value pair is separated by the pipe symbol
(|). For each entry to work correctly, you must ensure there
are no spaces before or after each pipe symbol.

related_info_url
String containing the URL to display in the related info pane. Use the
reserved value “_keep” to keep the last web page loaded in the related info
pane. This parameter is optional.

Note: RealOne Player caches related info pane URLs associated
with a presentation. This cache is flushed when a new
presentation begins.

width
Integer that specifies the width of the related info pane in pixels. This
parameter is not required, but its use is recommended. If no width is
specified, the width defaults to 320 pixels.

height
Integer that specifies the height of the related info pane in pixels. This
parameter is not required, but its use is recommended. If no height is
specified, RealOne Player uses the height of the media presentation.

media_browser_url
String containing the URL to display in the pane designated by the target
parameter.
41

RealOne Player Scripting Guide
target
String indicating the pane in which to open the URL given in the
media_browser_url parameter. If this string is set to _rpbrowser, the URL is
opened in the media browser pane. Any other target name displays the
URL in a secondary browsing window.

bnow_playing
Boolean that specifies if a clip is added to the Now Playing list. If set to
true (default), the clip is added to the Now Playing list. If set to false, the
clip is not added.

Although you can use an <A HREF> in your HTML to link to a .ram file, you
should use the PlayClip method instead. If you use <A HREF>, a browser is first
invoked, which in turn invokes RealOne Player. If you use the PlayClip method,
RealOne Player is invoked directly, which avoids intermediate dialogs being
displayed.

PlayerProperty
Retrieves the value of the specified property. Available as a Javascript extension
and an ActiveX control.

PlayerPropery(property)

property
A string that specifies the appropriate player property. One of the
following:

Property Performs the Following

APIVERSION Gets the version of the player’s Javascript extensions.

BANDWIDTH Gets the user’s bandwidth setting.

COUNTRYID Gets the country name.

DISTRIBUTION CODE Gets the OEM distribution code.

INSTALLPATH Gets the full path to the player’s installation directory.

LANGUAGEID Gets the language of the installed player.

LANGUAGEPREFERENCE Gets the user’s preferred language.

OSNAME Gets the computer’s operating system name, such as
Win98.

PRODUCTNAME Gets the name of the installed player, such as RealOne
Player.
42

CHAPTER 2: RealOne Player Methods
Returns the value of the specified property as either a string or int32 (as
appropriate).

PreloadURL
Caches URLs to be used later during playback. Caching these URLs enables a
quicker display time during media playback without reducing bandwidth
during streaming. Available as a Javascript extension.

PreloadURL(url)

url
Specifies the URL to cache.

The following example shows how you might cache two different URLs
(www.example1.com and www.example2.com) before playback. These URLs could
be referenced later using PROnPositionChange or other events.

<head>
<script language=Javascript>
 function RPOnPreload(){
 PreloadURL(http://www.example1.com)
 PreloadURL(http://www.example2.com)
 }
</script>
...

RealPlayerVersion
Retrieves the version number of the installed RealOne Player in packed
format. This number indicates the major and minor version information of
RealOne Player. Available as a Javascript extension and an ActiveX control.

RealPlayerVersion()

Note: Currently, this method must be used without
parenthesis at the end of the method name.

PRODUCTVERSION Gets the version of the installed player, for example,
6.0.10.448.

REGIONDATE Gets the Zip or postal code.

Property Performs the Following
43

RealOne Player Scripting Guide
Returns an integer containing the packed form of the RealOne Player version
information. This information can then be compared against the minimum
version number required to view your presentation.

Use the UnpackVersionNumber function described in “Unpacking Version
Information” on page 25 to display the number as a string. The string
returned by UnpackVersionNumber is the same as that displayed in the
Help>About RealOne Player dialog.

SetVideoBackgroundColor
Sets the video background color to the specified value. Available as a Javascript
extension.

SetVideoBackgroundColor(color)

color
The color value specified in either RGB format, for example "RGB(r,g,b)",
or as a hexidecimal value in the format “#RRGGBB”, such as "#FFFFFF".

Returns void.
44

C H A P T E R

3

 Chapter 3: REALONE PLAYER EVENTS
This chapter provides a alphabetized reference to the event handlers
you can use in the RealOne Player environment. For an overview of
events and event handlers, see “Using RealOne Player Event
Handlers” on page 29.

RPOnBuffering
Indicates the type of buffering currently occurring, and the percentage of the
buffering that has completed.

window.parent.extrenal.RPOnBuffering(flags, percent_complete)

flags
Integer value indicating the type of buffering. One of the following:

percent_complete
The amount of buffering completed, in percent.

RPOnPositionLengthChange
Indicates the current time position in the clip, and the total length of the clip.
This event is called twice per second (that is, every 0.5 second) during the
presentation playback.

windows.parent.external.RPOnPositionLenghtChange(position, length)

Value Description

0 Buffering start up.

1 Buffering resulting from a seek.

2 Buffering resulting from network congestion.

3 Buffering resulting from resuming after pausing a live presentation.
45

RealOne Player Scripting Guide
position
Contains the current position of the clip, in milliseconds.

length
The total length of the clip, in milliseconds.

The following example uses RPOnPositionLengthChange to synchronize HTML
with your presentation when the presentation is running between the 5 and
10 second marks.

var flag = 0
 function RPOnPositionLengthChange(position, length)
 {
 if (position >= 5000 && position < 10000 && flag == 0) {
 flag = 1
 document.location = "http://www.real.com"
 }
 }

RPOnPreload
Performs tasks, such as preloading URLs, before loading the media stream in
the Media Playback pane.

RPOnPreload()

The following example shows how you could call PreloadURL within
RPOnPreload to cache two different URLs (www.example1.com and
www.example2.com) before playback.

<head>
<script language=Javascript>
 function RPOnPreload()
 {
 parent.window.external.PreloadURL(http://www.example1.com)
 parent.window.external.PreloadURL(http://www.example2.com)
 }
</script>
...

RPOnStateChange
Indicates the play state of RealOne Player has changed (for example from Play
to Pause).

window.parent.external.RPOnStateChange(newPlayState)
46

CHAPTER 3: RealOne Player Events
newPlayState
Integer value indicating the current state. One of the following:

Value Description

0 Indicates the player is currently stopped.

1 Indicates the player is currently contacting.

2 Indicates the player is currently buffering.

3 Indicates the player is currently playing.

4 Indicates the player is currently paused.

5 Indicates the player is currently seeking.

6 Indicates the player is busy.
47

RealOne Player Scripting Guide
48

P A R T

II

PART II: SCRIPTING WITH THE EMBEDDED PLAYER
The following chapters explain how to use Javascript and
ActiveX controls when creating presentations that play within a
Web page through the embedded RealPlayer or RealOne Player.

C H A P T E R

4

 Chapter 4: EMBEDDED ENVIRONMENT
By embedding RealPlayer or RealOne Player controls in a Web page,
you can incorporate streaming media directly into the page. The
embedded player environment lets you place presentations in a Web
page using only a simple embedding markup. But you can also
extend that functionality through Javascript or VBScript, using
methods that set and retrieve presentation attributes, control the
clip playback, and handle user interactions.

Understanding Presentation Embedding
The following sections provide an overview to help you decide whether to
embed your presentation, and, if so, which markup and scripting languages to
use.

Embedded Environment vs. RealOne Environment

Before you begin embedding presentations in Web pages, read Chapter 1 to
determine if using the native RealOne Player environment, which requires less
work than embedding a presentation, suits your needs better. RealOne Player
can natively display HTML pages without the overhead of having to include
the embedding markup. You may find that developing presentations in the
native RealOne Player environment saves you considerable time and effort.

How Embedding Works

To embed a streaming media presentation in a Web page, you add <EMBED> or
<OBJECT> tags to your Web page markup, depending on whether you want to
use the Netscape plug-in method, or the ActiveX embedding method (for
more information, see “The Two Embedding Methods” on page 53). These
tags allow you to add media windows and RealPlayer controls, such as Stop
and Start buttons, directly to your Web page. Additionally, you can use
51

RealOne Player Scripting Guide
Javascript or VBScript to extend the functionality of the embedded
components.

The Embedded Player

When a viewer surfs to your Web page, the viewer’s browser launches RealOne
Player’s embedded player (or the embedded player of an earlier RealPlayer if
that software is installed on the viewer’s machine). The embedded player,
which is always installed with RealOne Player, handles media playback as a
browser helper application, without launching RealOne Player as a separate
application. If the viewer does not have RealOne Player installed, the browser
typically prompts the viewer to download and install the application.

Tip: It’s also a good idea to include a RealOne Player download
icon on your Web page. You can find these icons at
http://www.realnetworks.com/company/logos/index.html.

Backwards Compatibility

The embedding markup and methods described in this guide are geared for
RealOne Player. Most markup and methods are backwards compatible with
RealPlayer G2, RealPlayer 7, and RealPlayer 8. Some methods are even
compatible with RealPlayer 5. RealOne Player’s embedded controls have a
different look from earlier players, however. Hence, a Stop button embedded
in your Web page will look different for a viewer who has RealOne Player
installed, than for a viewer who has RealPlayer 8 installed. The buttons will
function the same way, though.

For More Information: The section “Embedded Controls” on
page 78 illustrates the RealOne Player embedded controls.

SMIL in Embedded Presentations

In a Web page, you can embed a single clip, a sequence of clips, or a SMIL
presentation, which can coordinate many clips to a single timeline. You can
play an entire SMIL presentation in a single image window in your Web page,
or you can display each clip within the presentation in a separate window.
RealOne Player supports SMIL 2.0 and 1.0, whereas RealPlayer G2,
RealPlayer 7, and RealPlayer 8 support only SMIL 1.0. Therefore, if you embed
a SMIL 2.0 presentation, viewers who have RealPlayer G2 through RealPlayer 8
installed are prompted to upgrade to RealOne Player.
52

CHAPTER 4: Embedded Environment
Media Preparation

Before you create an embedded presentation, you’ll need to create your media.
RealOne Player supports a wide range of streaming media clip types, including
RealAudio, RealVideo, RealText (streaming, timed text), RealPix (streaming
still images), Flash animation, and MPEG video and audio. You’ll also need to
decide which bandwidth targets you want to meet, whether dial-up modems,
fast connections such as cable modems, or both.

For More Information: See RealNetworks Production Guide for
basic information about clip types and bandwidth
management. If you plan to use RealAudio or RealVideo, you’ll
need Helix Producer, which you can download from
http://www.realnetworks.com/products/producer/
index.html.

The Two Embedding Methods

The embedded player supports two types of markup that allow you to add
streaming media to your Web page. The first method uses the Netscape plug-
in architecture, which adds <EMBED> tags to your Web page and allows you to
control playback with Javascript commands. Any browser that supports this
plug-in architecture will be able to play your embedded presentation. Major
browser support includes the following:

• Netscape Navigator 4.0 and higher.

There are known compatibility issues with some versions of Netscape
Navigator 6.0, although versions 6.1 and 6.2 work properly. However,
always be sure to test for compatibility.

• Microsoft Internet Explorer 5.0 and higher.

Even when you use the <EMBED> tag, RealOne Player communicates with
the Internet Explorer browser using ActiveX technology. This makes the
<EMBED> tag compatible with all versions of Internet Explorer, including
version 6.

Using the Netscape plug-in method allows you to reach the widest Internet
audience. However, the embedded player’s ActiveX control lets you use a
second method, which adds <OBJECT> tags to your Web page and allows the
use of VBSript. This method provides playback capabilities within these
products:

• Microsoft Internet Explorer 4.0 and higher on Microsoft Windows.
53

RealOne Player Scripting Guide
• Most applications that support ActiveX controls, such as Visual Basic and
Visual C++.

Both embedding methods support the same tag parameters. Plus, the
Javascript and VBScript methods are virtually identical. Because they both
have the same capabilities, you can use either the Netscape plug-in or the
ActiveX control depending on which products you need to support, and the
audience you wish to reach.

Javascript and VBScript

Once you embed a presentation, you can use a scripting language such as
Javascript or VBScript to extend the presentation’s functionality. Scripting lets
you add functions like stop, play, and volume control to elements such as
forms, HTML buttons, or graphic images. For example, you can use your own
graphic image for a Stop button, capturing mouse clicks to stop the clip
playback. While the methods are most commonly accessed from Java,
Javascript, or VBScript, they can also be developed using C++ and other
programming languages.

Tip: If you decide not to use scripting, you may find the Web
page embedding chapter of the RealNetworks Production Guide
easier to use than this guide. That chapter covers basic
embedding without scripting. You can download this guide
from http://service.real.com/help/library/encoders.html.

Methods

Both the Netscape plug-in and ActiveX embedding methods support the same
methods that allow you to issue commands and receive information about the
viewer’s embedded player, such as its version. Chapter 5 introduces you to
these methods according to functional category. Chapter 6 is a reference for all
available methods.

Callback Events

In addition to scripting methods that let you issue commands to the
embedded player, the player supports callback methods that report events. You
can use these callback methods to intercept and interpret RealOne Player
events. This lets you track mouse movement, capture user interactions with
the application controls, and monitor the progress of your presentation, for
example. Chapter 7 is a reference for all available callbacks.
54

CHAPTER 4: Embedded Environment
Using the Netscape Plug-in
To use the Netscape plug-in, you add <EMBED> tags to your Web page HTML. A
typical <EMBED> tag has three necessary parameters (SRC, WIDTH, and HEIGHT)
that are used to identify your presentation and the dimensions of the playback
area. Many other optional parameters are also available. The syntax for a
typical <EMBED> tag looks like the following:

<EMBED SRC=”presentation.rpm” WIDTH=300 HEIGHT=134 PARAMETER=value>

The preceding sample tag creates a playback area 300 pixels wide by 134 pixels
high within your Web page, and displays the contents of presentation.rpm
within the playback area. Typically, your Web page will contain multiple
<EMBED> tags, each of which embeds a different RealOne Player control. You
link all of these tags together using the CONSOLE parameter.

All parameters typically have the form PARAMETER=value. The parameter names
can be any letter case, although this manual depicts them in uppercase. Except
for file names, which must typically be lowercase, parameter values are not
case-sensitive. Unless they are URLs, parameter values do not need to be inside
quotation marks.

For More Information: For a list of all <EMBED> parameters, see
“Tag Parameters” on page 61. The section on the SRC parameter
contains information about linking your Netscape plugin to
your media. Available controls are described in “Embedded
Controls” on page 78.

Extending Embedded Controls Through Javascript

To extend RealPlayer’s Netscape plug-in functionality with Javascript, you first
embed the source file in an HTML page with the <EMBED> tag as described
above. The following example shows an <EMBED> tag with the required SRC,
WIDTH, and HEIGHT parameters, as well as several additional parameters
described in “Tag Parameters” on page 61:

<EMBED NAME=javademo
 SRC="demo.rpm"
 WIDTH=220 HEIGHT=180
 CONSOLE=one
 CONTROLS=ImageWindow
 BACKGROUNDCOLOR=white
 CENTER=true
 >
55

RealOne Player Scripting Guide
In the <EMBED> tag, the NAME parameter provides the name used by the
Javascript functions. For Javascript to work with RealPlayer, the <EMBED> tag
must not contain the parameter NOJAVA=true. This parameter prevents the Java
Virtual Machine from starting up in Netscape version 4.x, but it has no effect
on Netscape 6.0 or Internet Explorer browsers.

Once you create your tag or tags, you can use Javascript to issue commands to
control the embedded presentation. The following example shows a simple
form that provides a Play, Pause, and Stop button for the embedded
presentation:

<FORM>
<INPUT TYPE="button" VALUE="Play" onClick="document.javademo.DoPlay()">
<INPUT TYPE="button" VALUE="Pause" onClick="document.javademo.DoPause()">
<INPUT TYPE="button" VALUE="Stop" onClick="document.javademo.DoStop()">
</FORM>

If you include more than one instance of a single type of embedded control, or
a variety of different embedded controls in your HTML document, give each
instance a unique NAME. This ensures that you can use Javascript to manage
each embedded control individually, if necessary.

Receiving Callbacks Through Javascript

RealPlayer communicates the events that occur in a Netscape plug-in through
a set of internal callback routines. Depending on the platform and version of
Netscape you are targeting, however, the embedded player supports the
handling of these events using different mechanisms.

If you are developing a plug-in for Netscape version 6.0 running on Windows,
UNIX, or Macintosh, the mechanism consists of including a new <EMBED> tag
in your Javascript and specifying which events to receive. When targeting older
versions of Netscape, use LiveConnect to receive the callbacks.

Handling Events in Netscape Navigator 6 or later

Netscape Navigator version 6.0 or later does not support callback event
handling in the same manner as previous versions. For this reason, the
embedded player build number 6.0.8.1024 (RealPlayer 8 embedded player,
update 3) introduces a new mechanism for event handling involving the use of
Javascript and callback methods in a Netscape plug-in. The procedure is
56

CHAPTER 4: Embedded Environment
available for development using Javascript in the configurations listed in the
following table. It is not available with C++ or ActiveX.

* Unix does not currently support callback event handling.

To use the new mechanism in your Javascript plug-in, add the SCRIPTCALLBACKS
parameter to your <EMBED> tag defintion. Identify the events to handle by
providing a comma-separated list of callback methods, or by specifying All to
capture all events. For example:

<EMBED SCRIPTCALLBACKS=OnPresentationOpened,
OnPositionChange,OnPresentationClosed ...>

- OR -

<EMBED SCRIPTCALLBACKS=All ...>

Do not worry about backward compatibility: all versions of the embedded
player ignore unrecognized tags. However, you may detect the player version,
and, if it is earlier than build 6.0.8.1024, inform the user that their RealPlayer
version does not support the new event handling features.

For More Information: The GetVersionInfo method detects the
player version. Version numbers are described in “Obtaining
RealOne Player Version Information” on page 96.

Sending Callbacks to Multiple Plug-Ins with Netscape Navigator 6 or Later

If you embed multiple plug-ins in the same page, you need to identify which
plug-in receives which callback. To do this, include a NAME parameter
(described on page 69) with a unique, user-defined value in each <EMBED> tag:

<embed NAME=RVOCX SCRIPTCALLBACKS=All ...>

Then, prepend each callback with the NAME value, separating the NAME value
and callback method with an underscore:

function RVOCX_onClipOpened(short_clip_name,url){ ... }

The NAME value must also appear in embedded methods:

Play

Supported Configurations for the New Event Handling Mechanism

Browser Version Windows Macintosh Unix

Netscape Navigator 6.0 or later yes yes no*

Microsoft Internet Explorer all versions no yes no*
57

RealOne Player Scripting Guide
Handling Events in Netscape Navigator 4.x

When developing for Netscape versions 4.x, you must use LiveConnect to
receive the callbacks sent by RealOne Player. LiveConnect is described in
Netscape documentation available at the following Web address:

http://home.netscape.com/eng/mozilla/3.0/handbook/plugins/

To receive callbacks, you must embed a Java <APPLET> tag in your HTML code.
This tag should include a reference to an event interface class file (for example,
CODE=“callback.class”), and have the MAYSCRIPT attribute set. In addition, you
must also provide a NAME attribute (such as NAME=“MyName”) to identify the
applet instance, as shown here:

<APPLET CODE=“callback.class” WIDTH=1 HEIGHT=1 NAME=“MyName” MAYSCRIPT>
</APPLET>

You can then use the <APPLET> tag name to receive callbacks. For example, you
could use the following line to determine when a clip has closed:

if(document.MyName.OnClipClosed())

The HTML+Javascript version of this guide contains a rudimentary callback
Java applet in the samples directory (callback.class and callback.java) for testing
the callback methods of the embedded player. You can use this applet to
exercise your callback routines, or modify the callback.java file and compile
your own class file to more fully meet the needs of your application.

Class Files

To provide backward compatibility, the RealPlayer installation includes the
following classes for event notification:

• RMObserver.class

RMObserver is a Java interface for events coming from RealPlayer 7 or later.
Any object implementing this interface can register itself into RealPlayer 7
or later to get the full set of callback notifications.

• G2Observer.class

G2Observer is a Java interface for events coming from RealPlayer G2. Any
object implementing this interface can register itself into RealPlayer G2 to
get the set of RealPlayer G2 callback notifications.
58

CHAPTER 4: Embedded Environment
• RAObserver.class

RAObserver is a Java interface for events coming from RealPlayer 5.0. Any
object implementing this interface can register itself into RealPlayer 5.0 to
get the set of RealPlayer 5.0 callback notifications.

On Linux, the RMObserver.class file is found in the raplayer.zip file in the
/RealPlayer9 directory. On Windows, this class file is found in the rpcl3260.zip
file in the \Program Files\Netscape\Communicator\Program\Plugins directory.

Using the ActiveX Control
To use the embedded ActiveX control, you add <OBJECT> tags to your Web page
HTML. The tag definition must include the RealPlayer classID value:

CLASSID=“clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA”

It must also specify the width and height of the playback area. When you
intend to use scripting with the control, you must also give a user-defined
value for the ID parameter, such as ID=RVOCX. The syntax for a typical <OBJECT>
tag looks like the following:

<OBJECT ID=RVOCX CLASSID=“clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA”
WIDTH=300 HEIGHT=134>
...parameters...
</OBJECT>

This example tag creates a playback area 300 pixels wide by 134 pixels high
within your Web page. Typically, your Web page will contain multiple <OBJECT>
tags, each of which embeds a different RealOne Player control. You link all of
these tags together using the CONSOLE parameter.

Between <OBJECT> and </OBJECT>, you can define any number of additional
parameters using this syntax:

<PARAM NAME=“name” VALUE=“value”>

PARAM, NAME, and VALUE markers can be any letter case, although this manual
depicts them in uppercase. Except for file names, which are typically lowercase,
parameter values are not case-sensitive. Always enclose parameter values in
double quotation marks.

For More Information: For a list of all <OBJECT> parameters, see
“Tag Parameters” on page 61. The section on the SRC parameter
contains information about linking your ActiveX control to
59

RealOne Player Scripting Guide
your media. Available controls are described in “Embedded
Controls” on page 78.

Extending Embedded Controls Through VBScript

To extend RealPlayer’s ActiveX functionality on Internet Explorer, you first
embed the source file in an HTML page with the <OBJECT> tag:

<OBJECT ID=RVOCX CLASSID="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA"
WIDTH=220 HEIGHT=180>
<PARAM NAME="SRC" VALUE="rtsp://helixserver.example.com/video1.rm">
<PARAM NAME="CONSOLE" VALUE="one">
<PARAM NAME="CONTROLS" VALUE="ImageWindow">
<PARAM NAME="BACKGROUNDCOLOR" VALUE="white">
<PARAM NAME="CENTER" VALUE="true">
</OBJECT>

In the <OBJECT> tag, the ID parameter identifies the embedded clip for
reference by VBScript parameters. You can then use VBScript, or any
programming language supported by the browser, to issue commands to
control the embedded presentation. The following example shows a simple
form that provides a Play, Pause, and Stop button for the embedded
presentation:

<FORM>
<input TYPE="button" VALUE="Play" NAME="doplay">
 <script LANGUAGE="VBScript" FOR="doplay" EVENT="onClick">
 RVOCX.DoPlay
 </script>
<input TYPE="button" VALUE="Pause" NAME="pause">
 <script LANGUAGE="VBScript" FOR="pause" EVENT="onClick">
 RVOCX.DoPause
 </script>
<input TYPE="button" VALUE="Stop" NAME="stop">
 <script LANGUAGE="VBScript" FOR="stop" EVENT="onClick">
 RVOCX.DoStop
 </script>
</FORM>

Receiving Callbacks Through VBScript

To receive callbacks through VBScript, you use the <OBJECT> tag ID, shown
here set to RVOCX:
60

CHAPTER 4: Embedded Environment
<OBJECT ID=RVOCX HEIGHT=256 WIDTH=256>
 CLASSID="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA"
<PARAM NAME="controls" VALUE="all">
<PARAM NAME="SRC" VALUE="http://www.example.com/video1.rm">
</OBJECT>

You then use a <SCRIPT> tag to receive a VBScript callback. The following
example shows a callback for OnShowStatus:

<P>
Status Text:
<input type="text" name="statusText" size=100>

</P>
<SCRIPT language="VBS">
Sub RVOCX_OnShowStatus(byVal text)
 statusText.Value=text
End Sub
</SCRIPT>

Tag Parameters
This section describes, in alphabetical order, the parameters that you can add
to an <EMBED> or <OBJECT> tag. In an <EMBED> tag, parameters take the
following form:

<EMBED SRC=”...” WIDTH=... HEIGHT=... PARAMETER=value ... PARAMETER=value>

In an <OBJECT> tag, parameters take this form:

<OBJECT ID=... CLASSID=“...” WIDTH=... HEIGHT=...>
<PARAM NAME=“name” VALUE=“value”>
<PARAM NAME=“name” VALUE=“value”>
...
</OBJECT>

AUTOGOTOURL

Specifies how to handle URLs embedded in a presentation.

When set to true, AUTOGOTOURL passes all URLs embedded in your presentation
to the browser. When set to false, RealOne Player sends the URLs to a Java

Value(s): true|false

Default Value: true

Compatibility: RealPlayer 5 or later
61

RealOne Player Scripting Guide
applet or other application through the OnGotoURL callback. If you do not
include this parameter in your tag definition, and your presentation contains
embedded URLs, the URLs are not passed to the browser.

Tip: Beginning with RealPlayer G2, you can also use the
SetAutoGoToURL method described on page 118 to dynamically
change how embedded URLs are handled at any time.

AUTOSTART

Specifies whether to automatically play a presentation

When set to true, AUTOSTART starts the clip playing as soon as the clip’s preroll
has been streamed. The viewer does not need to press a Play button. If multiple
controls are linked together with the CONSOLE parameter, AUTOSTART needs to
be set in just one control. With the default value of false, the presentation, the
viewer must press a Play button to start the presentation.

Tip: If you are developing a Netscape plug-in in RealPlayer
version 5.0 or later, you can also use the SetAutoStart method
described on page 119 to dynamically control automatic
playback at any time.

BACKGROUNDCOLOR

Sets the background color for the image window.

The background color is specified using an RGB hexadecimal color value
(#RRGGBB) or a color name. When a clip includes transparent regions, the
background color shows through these areas. If you do not include the
BACKGROUNDCOLOR parameter in your tag definition, the background color for

Value(s): true|false

Default Value: false

Compatibility: RealPlayer 5 or later

Value(s): color_name|#RRGGBB

Default Value: black

Compatibility: RealPlayer G2 or later
62

CHAPTER 4: Embedded Environment
the image window is set to black (default). The following table lists the valid
background color values:

Tip: You can also use the SetBackgroundColor method described
on page 119 to dynamically change the background color of
the image window at any time.

CENTER

Specifies whether the presentation should be centered in the image window
and displayed in its original, encoded size.

When the CENTER parameter is set to true, the presentation is centered in the
image window, and the height and width of the presentation are reset to the
original dimensions (specified by the WIDTH and HEIGHT parameters when the
embedded presentation was encoded). When CENTER is omitted or set to false,
the presentation is not centered and the presentation expands to fill the image
window.

Tip: You can also use the SetCenter method described on page
120, to dynamically center the presentation in the image
window at any time.

Warning! The CENTER and MAINTAINASPECT parameters cannot
both be set to true. In addition, the set methods for these
parameters (SetCenter and SetMaintainAspect) cannot also both
be true. When one parameter or set method is set to true, the
other parameter and set method are considered to be false.

white (#FFFFFF) silver (#C0C0C0) gray (#808080) black (#000000)

yellow (#FFFF00) fuchsia (#FF00FF) red (#FF0000) maroon (#800000)

lime (#00FF00) olive (#808000) green (#008000) purple (#800080)

aqua (#00FFFF) teal (#008080) blue (#0000FF) navy (#000080)

Value(s): true|false

Default Value: false

Compatibility: RealPlayer G2 or later
63

RealOne Player Scripting Guide
CLASSID

Identifies an ActiveX control as belonging to the RealPlayer class.

An embedded player ActiveX control must include the RealPlayer classID
value in the <OBJECT> tag definition, and the value must be enclosed in double
quotation marks:

<OBJECT ID=... CLASSID=“clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA” ... >

If you do not include this parameter in your tag definition, or you specify an
invalid value, the browser will not load your presentation and may issue an
error message.

For More Information: For more information about creating an
embedded presentation using an ActiveX control, see “Using
the ActiveX Control” on page 59.

CONSOLE

Specifies whether multiple controls should be linked together to manage
playback of a single embedded presentation.

When there are multiple controls on the same page, a shared console name
links the controls into a single embedded presentation. For example, if you
have multiple Play and Stop buttons on the same page, a shared console name
enables them to control the same presentation. The following valid console
names are valid:

Value(s): clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA

Default Value: (none)

Compatibility: ActiveX only, RealPlayer 5 or later

Value(s): name|_master| _unique

Default Value: _unique

Compatibility: RealPlayer 5 or later

name A user-defined name that links the control with other controls
that share the same name. For example: console1

_master A predefined name that links the control to all other controls in
the page.

_unique A predefined name that does not link the control to any other
controls on the page.
64

CHAPTER 4: Embedded Environment
Tip: You can also use the SetConsole method described on page
121 to dynamically specify whether your controls are linked at
any time.

You can have multiple console names for separate presentations. For a page
showing two video clips, for example, you can define the console names video1
and video2. All controls linked by video1 interoperate, as do all controls linked
by video2. But a video1 volume slider, for example, will not affect the volume of
a video2 clip.

Tips for Using Consoles

• Every <EMBED> tag must have a SRC attribute. Tags linked by a console
name should have the same SRC value.

• If the <EMBED> tags in a console group have different SRC values, the first
valid source that RealOne Player finds among those choices becomes the
console source. This may not always be the first source listed.

• Clicking a play button for one console stops playback for other consoles.
This allows multiple consoles to play separate audio tracks or to use the
same image window.

Multiple Controls Example

The following example sets up an image window and two sets of controls (a
play button and stop button) for two separate videos, video1.rm and video2.rm.
The predefined console name _master links the image window to both control
sets. The control sets use different console names, however, so they do not link
to each other. Clicking each play button therefore starts a different video.

Because each <EMBED> tag must have a SRC value, the image window in the
following example uses the same source as the first play button. The viewer
simply clicks either play button to start a video. Clicking the other play button
stops the first video and plays the second one:

<EMBED SRC=”video1.rpm” CONSOLE=_master WIDTH=176 HEIGHT=128
NOJAVA=true CONTROLS=ImageWindow>

<H4>Video 1</H4>
<EMBED SRC=”video1.rpm” CONSOLE=video1 WIDTH=44 HEIGHT=26 NOJAVA=true
CONTROLS=PlayButton>
<EMBED SRC=”video1.rpm” CONSOLE=video1 WIDTH=26 HEIGHT=26 NOJAVA=true
CONTROLS=StopButton>
65

RealOne Player Scripting Guide
<H4>Video 2</H4>
<EMBED SRC=”video2.rpm” CONSOLE=video2 WIDTH=44 HEIGHT=26 NOJAVA=true
CONTROLS=PlayButton>
<EMBED SRC=”video2.rpm” CONSOLE=video2 WIDTH=26 HEIGHT=26 NOJAVA=true
CONTROLS=StopButton>

CONTROLS

Embeds the specified RealPlayer control on your Web page.

The embedded player includes many controls that you can add to your Web
page or application, including an image window, a full control panel,
individual buttons, sliders, and status panels. For a complete listing of
controls, see “Embedded Controls” on page 78.

Tip: You can also use the SetControls method described on page
122 to dynamically add controls to your Web page at any time.

HEIGHT

Sets the height of the image window or a specified embedded control.

This parameter sets the height of the control in pixels, or as a percentage of
the displayed browser window. Setting the WIDTH and HEIGHT parameters to
zero causes the control to be hidden. If you do not include this parameter in
your image window tag definition, the window may appear as a tiny icon
because streaming media presentations do not size automatically.

Note: All embedded controls have a recommended width and
height. For a complete listing of controls, see “Embedded
Controls” on page 78.

Value(s): control_name

Default Value: All

Compatibility: RealPlayer 5 or later

Value(s): pixels|percentage

Default Value: (none)

Compatibility: RealPlayer 5 or later
66

CHAPTER 4: Embedded Environment
ID

Identifies the embedded presentation for reference by VBScript.

When you intend to use scripting to control your presentation, you must
specify a unique value for the ID parameter, such as ID=RVOCX. After you have
identified your presentation in an <OBJECT> tag:

<OBJECT ID=RVOCX CLASSID="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA">
<PARAM NAME="SRC" VALUE="file:/presentation.rpm">
<PARAM NAME="CONTROLS" VALUE="ImageWindow">
...
</OBJECT>

you can use VBScript, or any programming language supported by the
browser, to issue RealPlayer commands to control the presentation:

<FORM>
<input TYPE="button" VALUE="Play" NAME="doplay">
 <script LANGUAGE="VBScript" FOR="doplay" EVENT="onClick">
 RVOCX.DoPlay
 </script>
</FORM>

For More Information: For more information about creating an
embedded presentation using an ActiveX control, see “Using
the ActiveX Control” on page 59.

LOOP

Specifies whether playback of the clip should continue, or loop, indefinitely.

When set to true, playback of the clip continues to loop until the user stops
the presentation. If multiple controls have been linked together using the
CONSOLE parameter, LOOP needs to be be set to true in only one tag definition.

Value(s): unique_ID

Default Value: (none)

Compatibility: ActiveX only, RealPlayer 5 or later

Value(s): true|false

Default Value: false

Compatibility: RealPlayer G2 or later
67

RealOne Player Scripting Guide
When LOOP is set to false, or if the parameter is not included in the tag
definition, then the presentation stops after the first playback.

Tip: You can also use the SetLoop method described on page
123 to dynamically change whether the clip should loop at any
time.

MAINTAINASPECT

Specifies whether the height-to-width (aspect) ratio of the clip should stay
constant when the clip scales to fit the image window.

If the MAINTAINASPECT parameter is set to true, the aspect ratio of the clip
remains constant when the image window is resized. When this occurs, the
clip is centered in the image window and scaled until one dimension reaches
the window’s boundaries and the other dimension is within the boundaries. If
multiple controls have been linked together using the CONSOLE parameter,
MAINTAINASPECT needs to be set to true in only one tag definition.

If the MAINTAINASPECT parameter is set to false, or if it is not included in the
tag definition, the clip scales as necessary to allow it to fill the image window
completely. When the dimensions of the clip are allowed to change in this
manner, the source image may appear distorted.

Warning! The MAINTAINASPECT and CENTER parameters cannot
both be set to true. In addition, the set methods for these
parameters (SetMaintainAspect and SetCenter) also cannot both
be true. When one parameter or set method is set to true, the
other parameter and set method are considered to be false.

Tip: You can also use the SetMaintainAspect method described
on page 124 to dynamically change whether the correct aspect
ratio should be maintained at any time.

Value(s): true|false

Default Value: false

Compatibility: RealPlayer G2 or later
68

CHAPTER 4: Embedded Environment
NAME

Specifies the name to associate with an embedded RealPlayer control, to
enable Javascript to refer to the control.

To refer to an embedded control from Javascript, you must specify a name for
the control in the NAME parameter in the <EMBED> tag definition. For example:

<EMBED NAME=my_name SRC=”...” WIDTH=176 HEIGHT=132>

A Javascript command can then refer to the control like this:

<Input Type=”button” Value=”play” onClick=”document.my_name.DoPlay()”>

When using more than one instance of a single type of embedded control, or a
variety of different embedded controls in your Web page, each instance must
have a unique NAME value. Using different names for each instance ensures
that you can use Javascript to manage each embedded control individually, if
necessary.

Warning! In Netscape versions 4.x, you can only refer to named
controls only when the NOJAVA parameter is not set to true. If
NOJAVA=true is included in your <EMBED> tag, the browser’s Java
Virtual Machine (JVM) is prevented from starting if it is not yet
running. Control referencing from Javascript may therefore be
unavailable.

NOJAVA

Prevents the Java Virtual Machine (JVM) from starting if it is not yet running,
making the use of Javascript impossible.

Setting NOJAVA=true in every tag linked by the same console name prevents the
JVM from starting, if it is not yet running, thus prohibiting NAMED controls
from being referenced using Javascript.

Value(s): name

Default Value: (none)

Compatibility: Netscape only, RealPlayer 5 or later

Value(s): true|false

Default Value: false

Compatibility: Netscape version 4.x only, RealPlayer G2 or later
69

RealOne Player Scripting Guide
When NOJAVA is set to false, or if the parameter is not included in your control
tag definition, the JVM is started and NAMED controls can be referenced from
Javascript (default). However, because the other parameters described in this
chapter do not require the JVM, and starting the JVM delays presentation
playback, it is highly recommended that you specify NOJAVA=true in the tag
definition for every control, if you do not intend to use scripting.

Note: Although you can specify NOJAVA in an ActiveX <OBJECT>
tag or in a Netscape 6.0 plug-in, doing so has no effect because
Internet Explorer and Netscape Navigator 6.0 launch the JVM
on browser start-up.

NUMLOOP

Specifies the number of the times the presentation should loop during
playback.

When the NUMLOOP parameter has been set to a number value, such as 2, the
presentation loops (plays from beginning to end) the specified number of
times and then stops. When you have multiple, linked controls, you need to
set NUMLOOP in one tag only. If you do not include the NUMLOOP parameter in
your tag definition (default), then the presentation only loops if the LOOP
parameter has been specified.

Note: If both the NUMLOOP and LOOP parameters have been
specified, or both of the set methods for these parameters
(SetLoop and SetNumLoop) have been used, the LOOP parameter
or method is ignored. This condition still applies even if
NUMLOOP has been set to zero.

Tip: You can also use the SetNumLoop method described on
page 124 to dynamically specify the number of times the
presentation should loop at any time.

Value(s): integer

Default Value: (none)

Compatibility: RealPlayer G2 or later
70

CHAPTER 4: Embedded Environment
PARAM

Used to specify additional parameters in an ActiveX control <OBJECT> tag
definition.

Additional parameters are specified through the PARAM parameter, using this
syntax:

<PARAM NAME=“name” VALUE=“value”>

The NAME variable can be assigned any of the parameters described in this
chapter, except for the NAME parameter. (To specify a name for a control in
your ActiveX control <OBJECT> tag defintion, use the ID parameter instead,
which is described on page 59.) The VALUE variable should be assigned the
appropriate value for the parameter specified in NAME.

For More Information: For more information about including
additional parameters in your ActiveX control, see “Using the
ActiveX Control” on page 59.

PREFETCH

Enables or disables PREFETCH playback mode, which causes RealPlayer to get
the stream description information from a presentation before playback
begins.

By setting PREFETCH to true, you can obtain information about a presentation
before it begins playing, and use that information to change playback
characteristics. When an embedded player detects that prefetch playback
mode is enabled, it obtains the the presentation’s stream description
information. After the information has been captured, OnPreFetchComplete (see
page 140) is returned to the plug-in or control, and the presentation is paused.

For example, after the description information has been fetched, you could
find out the size and width of an embedded clip using GetClipWidth and

Value(s): any valid parameter, except NAME

Default Value: (none)

Compatibility: ActiveX only, RealPlayer 5 or later

Value(s): true|false

Default Value: false

Compatibility: RealPlayer 5 or later
71

RealOne Player Scripting Guide
GetClipHeight (see page 104). You could then dynamically create the <EMBED> or
<OBJECT> tag for the image window using the clip’s native size for the WIDTH
and HEIGHT parameters.

Tip: You can also use the SetPreFetch method described on page
125 to dynamically specify whether prefetch playback mode is
enabled at any time.

Note: SMIL 2.0 includes a <prefetch/> tag, which is unrelated to
this PREFETCH parameter. The SMIL tag lets you download all or
part of a clip’s stream data before the clip plays, whereas the
PREFETCH parameter obtains just the stream description. For more
on SMIL prefetching, see the RealNetworks Production Guide.

REGION

Defines the ImageWindow control in which a specific clip from a SMIL
presentation plays.

This parameter is for use only when you embed a SMIL presentation, and you
want to play clips from the presentation in separate image windows on your
Web page. This parameter is not necessary if you want to embed an entire
SMIL presentation in a single image window. In this case, you just treat the
SMIL presentation like a clip, embedding it in a single image window set to
the same size (or larger) as the SMIL presentation’s width and height, which is
set in the SMIL file’s <root-layout/> tag.

Clips in a SMIL presentation normally play in SMIL regions that are defined
within the SMIL file header. When you embed the presentation’s clips in
different image windows, though, you omit the SMIL layout information. But
you still include in the SMIL source tag for each visual clip a region attribute
that ostensibly assigns the clip to a SMIL region. For example, a RealText clip
included in a SMIL presentation might have a source tag that looks like this:

<textstream src=”newsarticle.rt” region=”article_region “ .../>

To embed newsarticle.rt in a specific image window, you create the image
window with CONTROLS=ImageWindow, and use the REGION parameter to identify
the playback region. Here is an example using the Netscape plugin:

Value(s): SMIL_region_name

Default Value: (none)

Compatibility: RealPlayer G2 or later
72

CHAPTER 4: Embedded Environment
<EMBED SRC=”http://helixserver.example.com:8080/ramgen/newspaper.smil?embed”
 WIDTH=176 HEIGHT=132 NOJAVA=true CONTROLS=ImageWindow
 REGION=article_region>

The next example is for the ActiveX control:

<OBJECT ID=RVOCX CLASSID="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA"
 WIDTH=176 HEIGHT=132>
<PARAM NAME="SRC"
 VALUE="http://helixserver.example.com:8080/ramgen/newspaper.smil">
<PARAM NAME="CONTROLS" VALUE="ImageWindow">
<PARAM NAME="REGION" VALUE="article_region">
</OBJECT>

You can define similar <EMBED> or <OBJECT> tags to create other regions for
other clips in the SMIL file. In this case, each <EMBED> tag lists the same SMIL
file in the SRC parameter.

For More Information: For more information on SMIL, see the
latest RealNetworks Production Guide. That guide’s Web page
embedding chapter contains more information on this topic,
and includes sample files of embedded SMIL presentations.

SCRIPTCALLBACKS

Specifies the callback events to handle in a comma-separated list.

The SCRIPTCALLBACKS parameter can be used by Netscape version 6.0 plug-ins
to specify the set of callback events you would like to capture and handle. The
events are assigned to the parameter through a comma-separated list:

SCRIPTCALLBACKS=OnPresentationOpened,OnPresentationClosed

You can include any of the callbacks described in Chapter 7 in the list, or you
can specify All to capture all events.

For More Information: For more information about setting up
event handling in your Netscape plug-in, see “Handling Events
in Netscape Navigator 6 or later” on page 56.

Value(s): callback_name|All

Default Value: (none)

Compatibility: Netscape 6.0 only, RealPlayer 5 or later
73

RealOne Player Scripting Guide
SHUFFLE

Specifies whether all unplayed clips in a presentation, should be played back
in a random order

When the SHUFFLE parameter is set to true, all unplayed clips in a presentation
are played back in a random order, rather than in the order in which they
appear in the file. This parameter can be used with multiclip RAM files (.ram
or .rpm), or with SMIL files that contain only a sequence of clips. When
SHUFFLE is set to false, or if you do not include the parameter in your tag
definition, the clips are played back in the order in which they appear in the
multiclip file.

Tip: You can also use the SetShuffle method described on page
127 to dynamically specify whether clip playback should be
randomized at any time.

SRC

Specifies the URL of the .rpm file or presentation to be played.

The URL can begin with rtsp://, http://, pnm://, or file://, and the entire URL
string must be enclosed in double quotation marks. Any directories or files
specified in the URL cannot contain spaces in their names, that is, they need
to be properly URL encoded. For example, use %20 for a space character.

Using the TYPE Parameter

The SRC parameter may be omitted from the tag definition when the content
mime TYPE parameter is specified similar to:

<EMBED WIDTH=176 HEIGHT=132 TYPE=”audio/x-pn-realaudio-plugin”>

Value(s): true|false

Default Value: false

Compatibility: RealPlayer G2 or later

Value(s): URL

Default Value: (none)

Compatibility: RealPlayer 5 or later
74

CHAPTER 4: Embedded Environment
However, doing this may produce unexpected results. Therefore, it is strongly
recommended that you always include the SRC parameter and, minimally,
supply the name of an empty presentation file.

Tip: You can also use the SetSource method described on page
127 to dynamically specify the URL of the presentation at any
time.

Specifying a Source With the Netscape Plugin

You must include the SRC parameter in every <EMBED> tag, even when the tag
embeds a RealOne Player control, such as a Play button, instead of a clip.
However, you don’t specify a clip or SMIL file directly with SRC. Instead, you
specify a Ram file that has a .rpm extension:

<EMBED SRC=”http://www.example.com/presentation.rpm” WIDTH=176 HEIGHT=132>

The .rpm extension causes the browser to use RealOne Player as a helper
application, rather than to launch it as a separate application. The .rpm file is a
simple text file that gives the full URL to your clip or SMIL file:

rtsp://helixserver.example.com/video1.rm

For More Information: For full information about the Ram file
syntax, see the presentation delivery chapter of the
RealNetworks Production Guide.

Developing Your Presentation

The easiest means for developing your embedded presentation is to keep your
clips in the same folder as your Web page on your desktop computer. Your
<EMBED> tag can then link to a .rpm file in that folder:

<EMBED SRC=”presentation.rpm” WIDTH=300 HEIGHT=134>

To embed a single video, for example, the .rpm file simply contains a local file
URL to the clip (the file:// protocol designation is required):

file://video.rm

Warning! For embedded playback to work with Netscape
Navigator 6, the path to the .rpm file on a server or your local
computer cannot contain spaces or even escape codes for
spaces (%20). This causes Navigator 6 to search for a missing
plug-in.
75

RealOne Player Scripting Guide
Delivering Your Presentation

When you are ready to deliver your presentation to your audience, move your
files to their respective servers and change the URLs in your files:

• Keeping the .rpm File and the Web Page Together

If you plan to keep the .rpm file with the Web page, you do not need to
change the SRC values in your <EMBED> tags. You can simply transfer your
.rpm file and your Web page to the same directory on your Web server.

• Putting the .rpm File and the Web Page in Different Locations

If you move the .rpm file to a different directory than that Web page, link
each <EMBED> tag’s SRC parameter to the .rpm file with a full HTTP URL:

SRC=”http://www.example.com/media/presentation.rpm”

• Linking to Streaming Clips

No matter where you put your .rpm file and your clips, modify the .rpm file
to give the fully-qualified URL to the embedded clip or SMIL file. If the
clip or SMIL file is on a Web server, use an HTTP URL. If the clip or SMIL
file is on Helix Server, use an RTSP URL.

Tip: Always use a full URL in the .rpm file, even if all files and
clips are in the same directory on a Web server. RealOne Player
uses the .rpm file to locate the clip or presentation. Without a
fully-qualified URL, RealOne Player must construct the
location from the original Web page URL and the information
in the .rpm file. This creates more possibility for errors.

For More Information: For more information about the RTSP
protocol, as well as the Helix Server Ramgen feature, which lets
you eliminate the .rpm file, see the presentation delivery
chapter of RealNetworks Production Guide.

• Linking to Local Clips

If you will make your presentation available to people on their local
machines (through a download or a CD, for instance), you do not need to
change any URLs from those described in “Developing Your Presentation”
on page 75. In rare cases, though, you may want to use an absolute link,
rather than a relative link, in the .rpm file. When using absolute links, use
forward slashes in paths to create “Web style” paths. For example, instead
of this URL:
76

CHAPTER 4: Embedded Environment
file://c:\media\presentation.rpm

use this URL, which includes three forward slashes in file:///, and uses
forward slashes in path names as well:

file:///c:/media/presentation.rpm

Specifying a Source with ActiveX

For the ActiveX control, the <OBJECT> tag's CLASSID parameter causes the
presentation to play in the Web page, so you can simply link to the SMIL file
or clip within a single <OBJECT> tag. It is not necessary to use a Ram file with
the .rpm extension:

<OBJECT ID=RVOCX CLASSID="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA"...>
<PARAM NAME="SRC" VALUE="rtsp://helixserver.example.com/video1.rm">
...
</OBJECT>

TYPE

Identifies the MIME type of the presentation specifed in the SRC parameter,
which is described on page 74.

The typical syntax for the MIME type looks like the following:

<EMBED SRC=”http://.../.../presentation.rpm” WIDTH=176 HEIGHT=132
TYPE=”audio/x-pn-realaudio-plugin”>

The browser first reads the MIME type value, then embeds the appropriate
plug-in for the presentation. If you do not include this parameter in your tag
definition, the browser may not load the ideal plug-in for your presentation.

Note: When the TYPE parameter is specified, the SRC parameter
may be omitted from the tag definition. However, doing so
may produce unexpected results. Therefore, it is strongly
recommended that you always include the SRC parameter and,
minimally, supply the name of an empty presentation file.

Value(s): MIME type

Default Value: (none)

Compatibility: RealPlayer 5 or later
77

RealOne Player Scripting Guide
WIDTH

Sets the width of the image window or a specified embedded control.

Setting the HEIGHT and WIDTH parameters to zero causes the control to be
hidden. If you do not include this parameter in your image window tag
definition, the window may appear as a tiny icon because streaming media
presentations do not size automatically.

Note: All embedded controls have a recommended width and
height. For a complete listing of controls, see “Embedded
Controls” on page 78.

Embedded Controls
With the CONTROLS parameter, you can add controls such as a play/pause
button to your Web page. Viewers can then control playback as if they were
using RealOne Player as a separate application. For example, the following tag
displays the play/pause button in your Web page using an <EMBED> tag:

<EMBED SRC=”presentation.rpm” WIDTH=26 HEIGHT=26 NOJAVA=true
CONTROLS=PlayButton CONSOLE=”one”>

For the ActiveX control, the <OBJECT> tag would look like this:

<OBJECT ID=RVOCX CLASSID=“clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA”
WIDTH=26 HEIGHT=26>
<PARAM NAME=“CONTROLS” VALUE=“PlayButton”>
<PARAM NAME=“CONSOLE” VALUE=“one”>
</OBJECT>

Note: When adding more than one control to your Web page,
link the controls together with the CONSOLE parameter.

The following sections list and describe the embedded controls in alphabetical
order by control name. You use an <EMBED> or <OBJECT> tag’s WIDTH and
HEIGHT parameters to set the control’s size. Specifying different pixel sizes
other than the suggested values scales the controls larger or smaller. You can
also use percentage values for sizes, but this is recommended only for the
image window.

Value(s): pixels|percentage

Default Value: (none)

Compatibility: RealPlayer 5 or later
78

CHAPTER 4: Embedded Environment
Tip: Unless noted otherwise, all the RealOne Player controls
listed below are compatible with RealPlayer G2, RealPlayer 7,
and RealPlayer 8. With those versions of RealPlayer, however,
the controls take on a different appearance.

All

The CONTROLS=All parameter displays the basic RealOne Player control panel.
The control name “default” also works. Functions include play/pause, stop,
fast-forward, and rewind. Sliders include a position slider and a volume slider
with a mute button that pops up when the speaker button is clicked. Below
the buttons are a clip information field, a status panel, a network congestion
indicator, and a clip timing field.

If you set the size of this control panel to less than the recommended width or
height, the panel drops certain controls instead of squeezing all of the
controls down to a smaller size. This lets you add the control panel to small
pop-up windows, for example, without the controls becoming difficult to use.
This works for RealOne Player, but not earlier versions of RealPlayer.

Suggested pixel width: 375

Suggested pixel height: 100

Width less than 336 pixels: network congestion indicator dropped

Width less than 306 pixels: clip timing field dropped

Width less than 226 pixels: Clip Info label, rewind button, and fast-forward button
dropped

Width less than 174 pixels: RealOne logo dropped

Height less than 81 pixels: clip information field dropped
79

RealOne Player Scripting Guide
ControlPanel

Use CONTROLS=ControlPanel to display a compact RealOne Player control panel.
Functions include play/pause, stop, fast-forward and rewind. There’s also a
position slider, along with a volume slider and mute button that pops up
when the speaker button is clicked.

If you set the size of this control to less than the recommended width, the
panel drops certain buttons instead of squeezing all of the buttons down to a
smaller size. This works for RealOne Player, but not earlier versions of
RealPlayer.

FFCtrl

The CONTROLS=FFCtrl parameter displays a fast-forward button.

HomeCtrl

The CONTROLS=HomeCtrl parameter displays the RealOne Player logo, which is
linked to the RealNetworks Web site. In earlier versions of RealPlayer, this
control displays the Real™ logo.

Suggested pixel width: 350

Suggested pixel height: 36

Width less than 220 pixels: rewind and fast-forward buttons dropped

Width less than 168 pixels: RealOne logo dropped

Suggested pixel width: 26

Suggested pixel height: 26

Suggested pixel width: 30

Suggested pixel height: 30
80

CHAPTER 4: Embedded Environment
ImageWindow

The CONTROLS=ImageWindow parameter displays a playback window. This
control is not required for audio-only presentations. Even if no other controls
are visible on the page, the user can typically right-click (on Windows) or hold
down the mouse button (on the Macintosh) in the playback area to display a
menu of choices such as Play and Stop.

InfoPanel

The CONTROLS=InfoPanel parameter displays the presentation information
panel. For more on presentation information, see the RealNetworks Production
Guide.

InfoVolumePanel

Suggested pixel width: 176 or greater

Suggested pixel height: 132 or greater

Suggested pixel width: 300

Suggested pixel height: 55
81

RealOne Player Scripting Guide
Use CONTROLS=InfoVolumePanel to display presentation information along with
the volume slider and mute button. For more on presentation information,
see the RealNetworks Production Guide.

MuteCtrl

The CONTROLS=MuteCtrl parameter displays a mute button.

MuteVolume

The CONTROLS=MuteVolume parameter displays a mute button and volume
slider.

PauseButton

The CONTROLS=PauseButton parameter displays a pause button. Because the
PlayButton control turns into a pause button as a presentation plays, the
PauseButton control is generally not necessary with the RealOne Player. To
ensure backwards compatibility with earlier versions of RealPlayer, however,
use both the PlayOnlyButton and the PauseButton controls.

PlayButton (also PlayOnlyButton)

The CONTROLS=PlayButton parameter displays a play button. This turns into a
pause button when the presentation plays. If your presentation is accessible to
RealPlayers earlier than the RealOne Player, use CONTROLS=PlayOnlyButton
instead. In earlier RealPlayers, the PlayButton control includes both play and
pause buttons, whereas the PlayOnlyButton control includes just the play

Suggested pixel width: 325

Suggested pixel height: 55

Suggested pixel width: 26

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 88

Suggested pixel width: 26

Suggested pixel height: 26
82

CHAPTER 4: Embedded Environment
button as shown here. Using PlayOnlyButton therefore ensures backwards
compatibility.

PositionField

The CONTROLS=PositionField parameter displays the position field, which shows
the clip’s current place in the presentation timeline, along with the total clip
length.

PositionSlider

The CONTROLS=PositionSlider parameter displays a clip position slider.

RWCtrl

The CONTROLS=RWCtrl parameter displays a rewind button.

StatusBar

The CONTROLS=StatusBar parameter displays the status panel, which shows
informational messages. It also includes the network congestion LED and the

Suggested pixel width: 36

Suggested pixel height: 26

Suggested pixel width: 90

Suggested pixel height: 30

Suggested pixel width: 120

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 26
83

RealOne Player Scripting Guide
position field, which shows the clip’s current place in the presentation
timeline, along with the total clip length.

If you set the width of the status bar lower than the recommended width, the
panel drops fields instead of squeezing all of the fields down to a smaller size.
This works for RealOne Player, but not earlier versions of RealPlayer.

Note: The status bar is included in the All control. If you do not
embed a status bar or status field in your page, error messages
display in the browser’s status bar.

StatusField

The CONTROLS=StatusField parameter displays the message text area of the
status bar. If you do not embed a status field or status bar in your page, error
messages display in the browser’s status bar.

StopButton

The CONTROLS=StopButton parameter displays a stop button.

TACCtrl

Suggested pixel width: 335

Suggested pixel height: 30

Width less than 330 pixels: network congestion indicator dropped

Width less than 300 pixels: clip timing field dropped

Suggested pixel width: 200

Suggested pixel height: 30

Suggested pixel width: 26

Suggested pixel height: 26
84

CHAPTER 4: Embedded Environment
The CONTROLS=TACCtrl parameter displays an information field. Clip or
presentation information scrolls vertically through this field when the clip
first plays. The viewer can redisplay this information by clicking the arrow
button. Clicking the “i” button displays the full presentation information in a
pop-up window. With RealOne Player, if you set the width of the TACCtrl to less
than 220 pixels, the Clip Info field is dropped.

For More Information: For instructions on defining clip or
presentation information, see the RealNetworks Production
Guide.

VolumeSlider

The CONTROLS=VolumeSlider parameter displays a volume slider.

Suggested pixel width: 370

Suggested pixel height: 32

Suggested pixel width: 26

Suggested pixel height: 65
85

RealOne Player Scripting Guide
86

C H A P T E R

5

 Chapter 5: EMBEDDED METHOD OVERVIEWS
The embedded RealOne Player contains methods that control the
playback of embedded presentations. This chapter introduces these
method by category, describing how you can use groups of related
methods to enhance embedded presentations.

Tip: To see sample files, get the HTML+Javascript version of
this guide as described in “How to Download This Guide to
Your Computer” on page 2, and view this page.

Controlling Playback
The following methods let you play, pause, and stop the clip using your own
controls, as well as determine a clip’s playback status:

• CanPause

• CanPlay

• CanStop

• DoPause

• DoPlay

• DoStop

If you want to supply your own play, pause, and stop controls instead of using
the built-in controls, use the DoPlay, DoPause, and DoStop playback methods.
The following example shows one simple way to add your own controls:

<INPUT TYPE=”button” VALUE=”Play” onClick=”document.javademo.DoPlay()”>
<INPUT TYPE=”button” VALUE=”Pause” onClick=”document.javademo.DoPause()”>
<INPUT TYPE=”button” VALUE=”Stop” onClick=”document.javademo.DoStop()”>

These methods can also determine the playback status of the clip. The CanPlay,
CanPause, and CanStop playback methods indicate whether the clip can be
played, paused, or stopped. For example, if CanPlay returns true, the clip is
either paused or stopped, and is ready to play. If CanPlay returns false, the clip
is already playing, and is not ready to begin playing again.
87

RealOne Player Scripting Guide
Obtaining Play State Information
The following methods get the presentation’s current play state, or determine
the elapsed and remaining buffering times of a presentation:

• GetBufferingTimeElapsed

• GetBufferingTimeRemaining

• GetLastMessage

• GetLastStatus

• GetPlayState

GetPlayState returns an integer that indicates the current state of RealOne
Player. The possible play states denoted by the returned integer include the
following:

• 0 — Stopped

• 1 — Contacting

• 2 — Buffering

• 3 — Playing

• 4 — Paused

• 5 — Seeking

Knowledge of the current presentation state can be very useful. For example,
you could disable the image status text written along the bottom of the image
window, and replace it with the current presentation state in a custom display
panel.

Note: The image status text appears along the bottom of the
image window only when no other control, such as a status
panel or status field, is available to display the status text.

Like the information returned from GetPlayState, the information displayed
along the bottom of the image window indicates whether the playback is
contacting, buffering, and so on. To disable this text, set the SetImageStatus
method’s parameter to false. To determine whether the status text is currently
enabled or disabled, use the GetImageStatus method.

Another possibility is determining the amount of time that has elapsed since
buffering began for a requested presentation. After the embedded player has
contacted the host for the requested presentation, the player buffers the
content to provide smooth playback. You can obtain the elapsed time using
88

CHAPTER 5: Embedded Method Overviews
the GetBufferingTimeElapsed method, or determine the amount of buffering
time remaining using the GetBufferingTimeRemaining method.

Specifying Control Attributes
Several methods allow you to get or set the current state of the embedded
controls on your Web page. They supply information about the current state
of the embedded controls, along with a means of dynamically changing the
controls’ states. You can also use these methods in programming languages
such as C++.

The set methods allow you to change the attributes of the embedded player.
Many of these methods mirror the the <EMBED> or <OBJECT> tag parameters,
and can dynamically change the state of an embedded control. For example,
you can use SetBackgroundColor to alter the BACKGROUNDCOLOR parameter of the
<EMBED> or <OBJECT> tag, changing the ImageWindow background color
dynamically.

The following are the methods associated with parameters (listed in
parentheses) used with the <EMBED> or <OBJECT> tag:

• SetAutoGoToURL (AUTOGOTOURL)

• SetAutoStart (AUTOSTART)

• SetBackgroundColor (BACKGROUNDCOLOR)

• SetCanSeek (none)

• SetCenter (CENTER)

• SetConsole (CONSOLE)

• SetControls (CONTROLS)

• SetLoop (LOOP)

• SetMaintainAspect (MAINTAINASPECT)

• SetNumLoop (NUMLOOP)

• SetPreFetch (PREFETCH)

• SetShuffle (SHUFFLE)

• SetSource (SRC)

Additional methods let you get the current state of the attributes of the
embedded player. For example, GetBackgroundColor returns a hexadecimal value
for the current background color:

• DoGotoURL

• GetAutoGoToURL
89

RealOne Player Scripting Guide
• GetAutoStart

• GetBackgroundColor

• GetCanSeek

• GetCenter

• GetConsole

• GetControls

• GetLoop

• GetMaintainAspect

• GetNumLoop

• GetPreFetch

• GetShuffle

• GetSource

Seeking Through a Clip
The embedded player provides several methods that obtain information about
the currently-playing clip. This includes determining the present clip position,
total length, and whether one can seek through the presentation:

• GetLength

• GetPosition

• SetPosition

During playback, use GetCanSeek to verify whether you can seek through the
clip. If the method returns true, you can use GetLength and GetPosition to
obtain the clip length (total milliseconds) and current position (milliseconds
already played). You can use the value returned from GetLength to ensure that
the value used with SetPosition does not exceed the total clip length.

You can also use SetCanSeek when GetCanSeek returns true. This method allows
you to specify whether the viewer can seek through the clip. However, if you
attempt to use SetCanSeek to allow seeking through an inherently unsearchable
clip, such as a live broadcast, the set method has no affect.

Accessing Clip Title, Author, and Copyright Information
The following methods allow you to get or set a clip’s title, author, and
copyright information:

• GetAuthor

• GetClipHeight
90

CHAPTER 5: Embedded Method Overviews
• GetClipWidth

• GetCopyright

• GetTitle

• SetAuthor

• SetCopyright

• SetTitle

When title, author, and copyright information has been encoded in a clip, use
GetTitle, GetAuthor, and GetCopyright to retrieve the information. In multiclip
presentations, these methods return the information associated with the
currently-playing clip.

The SetTitle, SetAuthor, and SetCopyright methods dynamically change whether
the title, author, and copyright information displays for a clip. Normally, this
information displays when the viewer clicks the “i” button on an embedded
control panel. In multi-clip presentations, these methods override the clip
information for the entire presentation, not just the currently-playing clip.
These methods are useful for multiclip presentations in which you want to
supply a title, author, and copyright information for the entire presentation.

Directing a Playlist in a Multi-clip Presentation
Multi-clip presentations are made up of playlists that contain useful
information about each of the clips. You can use the following methods to
move from clip to clip in the playlist, or acquire content information about
any clip in the presentation:

• DoNextEntry

• DoPrevEntry

• GetCurrentEntry

• GetEntryAbstract

• GetEntryAuthor

• GetEntryCopyright

• GetEntryTitle

• GetNumEntries

• HasNextEntry

• HasPrevEntry

To get the number of entries in the playlist, use GetNumEntries. In this method,
a single entry is always returned as the number 1. You can also retrieve the
entry number of the clip that is currently playing using GetCurrentEntry. Note,
91

RealOne Player Scripting Guide
however, that this method begins counting at zero, the third entry in a playlist
therefore returns the number 2. While playing a multi-clip presentation, use
HasNextEntry to determine if there is another entry in the playlist. You can then
use DoNextEntry to jump to the next clip. Use HasPrevEntry to determine if a
previous entry exists in the playlist. If so, you can use DoPrevEntry to jump back
to the beginning of the previous clip.

After you have determined the number of entries in a playlist, you can use
GetEntryAbstract, GetEntryAuthor, GetEntryCopyright, and GetEntryTitle to retrieve
the abstract, author, copyright, and title information for any clip in the
presentation. Simply supply the number of the playlist entry for which you
want information as the parameter for these methods. These methods return
a string that contains the information for the specified entry.

Determining Live Broadcast
The GetLiveState method indicates whether the current stream is live. This
information is useful, for instance, if you want to know whether to use the clip
positioning methods. If GetLiveState returns true, the current stream is part of
a live presentation, and you cannot use the clip positioning methods.

Display User Interface Dialogs
RealOne Player contains several menus and dialogs that let the viewer set
various player preferences, view the playback statistics, and view information
about the player. The following methods can set RealOne Player preferences,
as well as view player information and statistics:

• GetShowAbout

• GetShowPreferences

• GetShowStatistics

• SetShowAbout

• SetShowPreferences

• SetShowStatistics

You can access preferences using SetShowPreferences. Setting this method’s
parameter to true brings up an abbreviated version of the RealOne Player
Preferences dialog box. To determine if this dialog box is already displayed, use
GetShowPreferences, which returns true if the dialog box is already displayed.
92

CHAPTER 5: Embedded Method Overviews
Use SetShowStatistics to view playback statistics. Setting this methods’s
parameter to true brings up the standard RealOne Player statistics dialog box.
To determine if this dialog box is already displayed, use GetShowStatistics,
which returns true when the statistics dialog box is displayed.

RealOne Player’s “about” dialog box contains information about the player
version and the individual player components. To view this dialog, set the
SetShowAbout parameter to true. To determine if this dialog box is already
being displayed, use the GetShowAbout method. If this method returns true, the
dialog is already displayed.

Error Handling
You can designate whether or not the RealOne Player embedded in your Web
page displays error dialogs by using the following methods:

• GetLastErrorMoreInfoURL

• GetLastErrorRMACode

• GetLastErrorSeverity

• GetLastErrorUserCode

• GetLastErrorUserString

• GetLastStatus

• GetWantErrors

• SetWantErrors

If the SetWantErrors method is set to true, error messages from the player are
trapped, and not displayed in an error dialog box. If SetWantErrors is set to false,
error messages are displayed in an error dialog box. You can use the
GetWantErrors method to determine if error messages are being trapped. If
GetWantErrors returns true, error messages are being trapped. If GetWantErrors
returns true, error message will be displayed when they occur.

When a player error occurs, the GetLastErrorMoreInfoURL method supplies a
URL that can provide more information than is provided by the standard
error string. If no URL is available to supply more information, this method
returns nothing.

The GetLastErrorRMACode method returns a value that represents the error code
returned by RealOne Player. The values of the error codes and their
descriptions can be found in the SDK rmaerror.h file and in the RealNetworks
SDK Developer’s Guide.
93

RealOne Player Scripting Guide
Other RealOne Player error methods include GetLastErrorSeverity, which
responds with the severity of the error, and GetLastStatus, which responds with
the text of the last status message returned by the OnShowStatus callback.

Also included are two user-defined error methods: GetLastErrorUserCode and
GetLastErrorUserString. The GetLastErrorUserCode returns a user-defined error
code, and GetLastErrorUserString returns a user-defined string that describes the
last error that occurred. If you have designed a custom plug-in for RealOne
Player, you can use both of these methods to return your own error codes and
error strings for your plug-in. If you are not providing a custom plug-in for
RealOne Player, both of these methods return nothing.

Setting the Display Size
You can change the size of the image window on your Web page to either the
original size you specified in the <EMBED> or <OBJECT> tag, or to full screen
with the following methods:

• GetFullScreen

• GetOriginalSize

• SetFullScreen

• SetOriginalSize

To set the image window to full screen, use the SetFullScreen method with its
parameter set to true. To determine if the image window is set to full screen,
use the GetFullScreen method. If this method returns true, the image window is
set to full screen.

To set an image window to the original size specified in the <EMBED> or
<OBJECT> tag on your Web page, use the SetOriginalSize method with its
parameter set to true. To determine if the image window is currently set to its
original size, use the GetOriginalSize method. If this method returns true, the
image window is set to its original size.

Controlling Audio
Using the following methods, you can embed various audio controls in your
Web page to get and set the volume of the presentation, mute the
presentation, and determine if the presentation is being played in stereo or
monaural:

• GetMute
94

CHAPTER 5: Embedded Method Overviews
• GetStereoState

• GetVolume

• SetMute

• SetVolume

To set the volume of the presentation, use SetVolume. The parameter you enter
for this method is a percentage of the total volume. That is, if you want the
volume to be set to 50%, use the number 50 as this method’s parameter. To
determine the current volume of the presentation, use the GetVolume method.
This method returns the current volume setting as a percentage of the total
volume.

To mute the presentation, use the SetMute method. Set this method’s
parameter to true to mute the presentation, and false to return the sound
volume to its previous level. To determine if the presentation is currently
muted, use the GetMute method. This method returns true if the presentation
is muted and false if it is not.

To determine if the current presentation is stereo or monaural, use the
GetStereoState method. This method returns true if the presentation is stereo,
and false if the presentation is monaural.

Getting Network Information
Using the following methods, you can obtain information to determine how
your embedded presentation reacts to the user’s network capabilities.

• GetSourceTransport

• GetPacketsTotal

• GetPacketsMissing

• GetBandwidthAverage

• GetNumSources

• GetBandwidthCurrent

• GetPacketsEarly

• GetPacketsLate

• GetPacketsOutOfOrder

• GetPacketsReceived

Two methods provide playback bandwidth information from the user’s
RealOne Player. The first, GetBandwidthAverage, returns the average playback
95

RealOne Player Scripting Guide
bandwidth of the user’s RealOne Player, in bits per second, from the
beginning of playback to the time when this method is called. The second,
GetBandwidthCurrent, returns the current playback bandwidth in bits per
second.

The GetNumSources method returns the number of sources in the
presentation, where a source is a piece of media or an entry in a playlist or .rpm
file.

Several methods are provided that let your Web page monitor the network
activity of the user’s RealOne Player. GetPacketsReceived indicates the total
number of packets that the player received correctly from Helix Server, and
GetPacketsTotal indicates the total number of packets that should have been
received by the player up to the point at which this method was called,
including the packets that were lost. If no packets were lost, GetPacketsTotal
returns the same number as GetPacketsReceived.

You can also monitor how well the user’s RealOne Player is receiving packets:

• GetPacketsEarly indicates the number of packets that were received early.

• GetPacketsLate indicates the number of packets that were received late.

• GetPacketsMissing indicates the number of packets that were never received.

• GetPacketsOutOfOrder indicates the number of packets that were received
out of order.

• GetSourceTransport returns the type of protocol used for the stream by the
user’s RealOne Player. This method either returns either local, udp, or tcp,
depending on the source transport.

Obtaining RealOne Player Version Information
The GetVersionInfo method returns the version of the RealOne Player plug-in
running on the user’s machine (in period-delineated form, such as “6.0.7.788”,
which is the embedded RealPlayer build for RealPlayer 8). With this
information, your Web page can provide different options for different
versions of the player.
96

CHAPTER 5: Embedded Method Overviews
The following table lists the equivalent RealPlayer releases, stand-alone builds,
and embedded player builds. Use this information to differentiate between
versions.

Note: If you use JavaScript to get the version information, the
GetVersionInfo may not function on some versions of Internet
Explorer 5. In this case, use VBScript to ensure the
GetVersionInfo method functions properly.

Event Handling
RealOne Player includes methods for enabling or disabling keyboard and
mouse events on your Web page. Also included is a method that can be used in
plug-ins to make event handling act more like event handling in ActiveX
controls:

• GetConsoleEvents

• GetWantKeyboardEvents

• GetWantMouseEvents

• SetConsoleEvents

• SetWantKeyboardEvents

• SetWantMouseEvents

Version Compatibility Table

Release Version Standalone Build Number Embedded Player Build Number

8 Update 3 6.09.584 6.0.8.1024

8 Update 2 6.0.9.450 6.0.7.881

8 Gold 6.0.9.357 6.0.7.788

7 Update 1 6.0.8.122 6.0.7.529

7 Gold 6.0.7.380 6.0.7.407

G2 Update 3 6.0.6.99 6.0.6.98

G2 Update 2 6.0.6.33 6.0.6.33

G2 Update 1 6.0.5.27 6.0.5.27

G2 Gold 6.0.3.128 6.0.6.131
97

RealOne Player Scripting Guide
Available Methods

The SetWantKeyboardEvents method sets whether or not keyboard events are
returned from the user’s RealOne Player. If SetWantKeyboardEvents is set to true,
the keyboard event callbacks, OnKeyDown, OnKeyPress, and OnKeyUp, are sent
from RealOne Player when a keyboard event occurs. If this method is set to
false, keyboard events are not sent. You can use the GetWantKeyboardEvents
method to determine if keyboard events have been requested from the user’s
RealOne Player.

The SetWantMouseEvents method works in much the same way. If
SetWantMouseEvents is set to true, the mouse event callbacks, OnLButtonDown,
OnLButtonUp, OnMouseMove, OnRButtonDown, and OnRButtonUp, are sent from
RealOne Player when a mouse event occurs. If this method is set to false,
mouse events are not sent. You can use the GetWantMouseEvents method to
determine if mouse events have been requested from the user’s RealOne
Player.

The SetConsoleEvents method is provided to let plug-in designers make their
plug-ins behave more like the ActiveX control. By setting the value parameter
of the SetConsoleEvents method to false, only the plug-in to which the console
connects will send events.

How Event Handling Works

In ActiveX, you specify the particular ActiveX control for which your function
is handling events. Thus any event that occurs in reference to a specific
ActiveX control is always handled only by that single control.

If, however, you are using multiple plug-ins on a page and an event occurs on
that page, a Java applet cannot determine from which plug-in the event was
sent. (Although you could add multiple Java applets to the page to handle
each individual plug-in, in general all events for all plug-ins that share the
same console name are sent to a single applet.) For example, if you have two
plug-ins on a page and generate a mouse or button event in either of the plug-
ins, the event goes to the applet, but the applet cannot determine which plug-
in generated the event.

You can use the GetConsoleEvents method to determine whether console events
are enabled. If GetConsoleEvents is true, then console events are enabled and
events from any applet will be sent to the plug-in. If this method is set to false,
console events are disabled and only the plug-in to which the console connects
will send events. The SetConsoleEvents method does not affect ActiveX controls.
98

C H A P T E R

6

 Chapter 6: EMBEDDED PLAYER METHODS
An application, applet, or control can use the methods described in
this chapter to communicate with the embedded environment of
the RealOne Player. The methods are listed here in alphabetical
order and each description contains information about how to use
the method in your Netscape plug-in or ActiveX control, an example
of syntax and usage, and backward compatibilty tips for various API
versions.

For More Information: For information about categories of
methods, such as those used to control playback of your
presentation, see Chapter 5.

Note: Many of the methods listed below return a boolean value
for plug-ins. Plug-in developers can safely ignore the boolean
value because it should always return true. This value will only
be false if some serious error occurs with the plug-in.
Therefore, if you are having problems getting your script to
work, you might want to check this return value.

CanPause
Indicates whether the player is currently playing a clip that can be paused.

CanPause(void)

Returns true if the player is currently playing a clip. Returns false if the player
is already pause or is stopped.

CanPlay
Indicates whether the player is currently paused or stopped, or is currently
playing.
99

RealOne Player Scripting Guide
CanPlay(void)

Returns true if the player is currently paused or stopped, and current source
file is valid. Returns false if the player is currently playing.

CanStop
Indicates whether the the current clip is playing or paused, or the clip is
already stopped. This method is compatible with RealPlayer version 5.0 and
later.

CanStop(void)

Returns true if RealOne Player is currently playing a clip or is paused. Returns
false if the clip is already stopped.

DoGotoURL
Causes the control to attempt a navigation to the specified URL in the
specified frame target. The container must support URL browsing. This
method is backward-compatible with ActiveX controls built with RealPlayer
version 5.0 or later, but not compatible with version 5.0 Netscape plug-ins.

DoGotoURL(string url, string target)

url
The URL to which to navigate.

target
The frame target to which to navigate.

The target parameter is required in order to use this function, but the value of
the parameter is ignored.

Returns void.

DoNextEntry
Skips to the next clip in the RAM (.ram or .rpm) or SMIL file that contains
multiple clips. In a SMIL file, a <par> group is treated as a single clip.

DoNextEntry(void)

Returns a boolean value for plug-ins.
100

CHAPTER 6: Embedded Player Methods
DoPause
Pauses the current clip. Equivalent to clicking the Pause button.

DoPause(void)

Returns a boolean value for plug-ins.

DoPlay
Plays the current clip. Equivalent to clicking the Play button.

DoPlay(void)

Returns a boolean value for plug-ins.

DoPrevEntry
Skips to the previous clip in a RAM (.ram or .rpm) or SMIL file that contains
multiple clips. In a SMIL file, a <par> group is treated as a single clip.

DoPrevEntry(void)

Returns a boolean value for plug-ins.

DoStop
Stops the clip. Equivalent to clicking the Stop button. This method is
compatible with RealPlayer version 5.0 and later.

DoStop(void)

Returns a boolean value for plug-ins.

GetAuthor
Indicates the current clip's author string.

GetAuthor(void)

Returns a string that contains the current clip’s author.

GetAutoGoToURL
Indicates whether or not the AutoGoToURL setting is enabled.

GetAutoGoToURL(void)
101

RealOne Player Scripting Guide
Warning! The use of this method varies slightly between
programming languages. In C++, the name of the method is
GetAutoGotoURL, while in Java, the name is GetAutoGoToURL.
Either name may be used when developing in Javascript or
VBScript.

Returns true if the setting is enabled. Returns false if the setting is disabled.

GetAutoStart
Indicates whether or not playback will start automatically.

GetAutoStart(void)

Returns true if playback will start automatically. Returns false if the playback
will not be started automatically.

GetBackgroundColor
Indicates the hexadecimal value for the current background color for the
image window.

GetBackgroundColor(void)

Returns a string that contains the RGB hexadecimal color value in the format
#RRGGBB. The color names for these color values are described in
SetBackgroundColor.

GetBandwidthAverage
Indicates the average amount of bandwidth used by the presentation.

GetBandwidthAverage(void)

Returns an int32 that contains the average bandwidth, in bits per second, of
the packet transfer from the beginning of the playback to the current time.

GetBandwidthCurrent
Indicates the current amount of bandwidth being used by the presentation.

GetBandwidthCurrent(void)

Returns an int32 that contains the current bandwidth in bits per second.
102

CHAPTER 6: Embedded Player Methods
GetBufferingTimeElapsed
Indicates the current elapsed buffering time.

GetBufferingTimeElapsed(void)

Returns an int32 that contains the number of milliseconds of elapsed
buffering time.

GetBufferingTimeRemaining
Indicates the estimated remaining buffering time.

GetBufferingTimeRemaining(void)

Returns an int32 that contains the estimated remaining buffering time in
milliseconds.

GetCanSeek
Indicates whether the user can seek within the clip through the user interface.

GetCanSeek(void)

Returns true if the user can seek within the clip. Returns false if the user
cannot seek within the clip. Live or simulated live clips always return false.

GetCenter
Indicates whether or not the visual datatype will be centered within the image
window.

GetCenter(void)

Returns true if the visual datatype is centered in the image window. Returns
false (default) if the datatype is not centered.

GetClipHeight
Indicates the height of the presentation.

GetClipHeight(void)

Returns an int32 that contains the height of the clip window, in pixels. A value
of 0 is returned when the presentation is not visual.
103

RealOne Player Scripting Guide
GetClipWidth
Indicates the width of the presentation.

GetClipWidth(void)

Returns an int32 that contains the width of the clip window, in pixels. A value
of 0 is returned when the presentation is not visual.

GetConnectionBandwidth
Indicates the normal, maximum bandwidth settings as set by the user in the
RealOne Player preferences.

GetConnectionBandwidth(void)

Returns an int32 that contains the maximum bandwidth setting, in bits per
second, from the Connections category of the RealOne Player Preferences
dialog.

GetConsole
Indicates a console name used to link multiple control instances.

GetConsole(void)

Returns a string that contains the name of the RealOne Player console
currently associated with the embedded control.

GetConsoleEvents
Indicates whether console events are enabled.

GetConsoleEvents(void)

Returns true if console events are enabled. Returns false if console events are
disabled.

For More Information: See “Event Handling” on page 97 for an
explanation of console events.

GetControls
Indicates the name of the visible components of the RealOne Player control.

GetControls(void)
104

CHAPTER 6: Embedded Player Methods
Returns a string that contains the name of the RealOne Player control
currently associated with the name or ID of the embedded control.

For More Information: For valid control names, see “Embedded
Controls” on page 78.

GetCopyright
Indicates the current clip's copyright string.

GetCopyright(void)

Returns a string that contains the current clip’s copyright information.

GetCurrentEntry
Indicates the number of the entry currently playing.

GetCurrentEntry(void)

Returns an int32 that contains the number of the entry currently playing. The
current entry number of the first entry is “0”.

Warning! The use of this method varies slightly between
programming languages. In C++, this function returns an
int16, while in Java, an int32 value is returned. Either integer
type may be used when developing in Javascript or VBScript.

GetDRMInfo
Provides necessary client information used by the license server to generate
content licenses for a particular unique user. This method is used in
conjunction with the RealNetworks digital rights management systems.

GetDRMInfo (string identifier)

identifier
A four-letter string identifier for which the license will be returned. For
example, the string RNBA is used for the RealNetworks Media Commerce
Suite.
105

RealOne Player Scripting Guide
Returns a string in the following form (line breaks are for readability only):

ClientPubKey=<ClientPubKey>

&Challenge=<Challenge>

&ExtraInfo=<ExtraInfo>

Note: This method is available only in embedded player builds
6.0.8.1024 and later.

GetDoubleSize
Indicates whether or not the image is currently in double-size mode.

GetDoubleSize(void)

Returns true if the image is double size. Returns false if the image is not
double size.

Note: This method is included only for ActiveX controls and
plug-ins used in applications; this method is not intended for
use in Web pages.

GetEntryAbstract
Indicates the abstract for the specified playlist entry.

GetEntryAbstract(int32 entry_index)

entry_index
The entry number of the clip in the playlist for which the abstract is being
requested. The entry number for the first clip in the playlist is “0”.

Warning! The use of this method varies slightly between
programming languages. In C++, this function requires an
int16 parameter, while in Java, an int32 parameter is required.
Either integer type may be used when developing in Javascript
or VBScript.

Returns a string that contains the abstract for the specified playlist entry.

GetEntryAuthor
Indicates the author for the specified playlist entry.

GetEntryAuthor(int32 entry_index)
106

CHAPTER 6: Embedded Player Methods
entry_index
The entry number of the clip in the playlist for which the author is being
requested. The entry number for the first clip in the playlist is “0”.

Warning! The use of this method varies slightly between
programming languages. In C++, this function requires an
int16 parameter, while in Java, an int32 parameter is required.
Either integer type may be used when developing in Javascript
or VBScript.

Returns a string that contains the author for the specified playlist entry.

GetEntryCopyright
Indicates the copyright for the specified playlist entry.

GetEntryCopyright(int32 entry_index)

entry_index
The entry number of the clip in the playlist for which the copyright is
being requested. The entry number for the first clip in the playlist is “0”.

Warning! The use of this method varies slightly between
programming languages. In C++, this function requires an
int16 parameter, while in Java, an int32 parameter is required.
Either integer type may be used when developing in Javascript
or VBScript.

Returns a string that contains the copyright for the specified playlist entry.

GetEntryTitle
Indicates the title for the specified playlist entry.

GetEntryTitle(int32 entry_index)

entry_index
The entry number of the clip in the playlist for which the title is being
requested. The entry number for the first clip in the playlist is “0”.
107

RealOne Player Scripting Guide
Warning! The use of this method varies slightly between
programming languages. In C++, this function requires an
int16 parameter, while in Java, an int32 parameter is required.
Either integer type may be used when developing in Javascript
or VBScript.

Returns a string that contains the title for the specified playlist entry.

GetFullScreen
Indicates whether or not the image is currently in full-screen mode.

GetFullScreen(void)

Returns true if the image is in full-screen mode. Returns false if the image is
not in full-screen mode.

GetImageStatus
Indicates whether the status text is written to the image window.

GetImageStatus(void)

Returns true (default) if the status text is written to the image window.
Returns false if the status text is not sent.

GetLastErrorMoreInfoURL
Provides the “more info” URL from the last error.

GetLastErrorMoreInfoURL(void)

Returns a string that contains the “more info” URL. This method may return
nothing (for example, if there is no “more info” URL).

GetLastErrorRMACode
Gets the RMA error code from the last error. RMA error codes are described in
the SDK header file pnresult.h in the available at:

http://www.realnetworks.com/resources/server/

In normal operation, all components need to be able to handle the following
basic codes that may be returned by Helix Server:
108

CHAPTER 6: Embedded Player Methods
• PNR_FAIL—Operation failed.

• PNR_OK—Operation succeeded.

• PNR_UNEXPECTED—Call was unexpected or method is not implemented.

GetLastErrorRMACode(void)

Returns an int32 that contains the error code value.

GetLastErrorSeverity
Indicates the error level for the last error.

GetLastErrorSeverity(void)

Returns an int32 that contains the error level.

Warning! The use of this method varies slightly between
programming languages. In C++, this function returns an
int16, while in Java, an int32 value is returned. Either integer
type may be used when developing in Javascript or VBScript.

Error levels consist of the following:

Error Levels

Level Condition Usage

0 Panic Error potentially causing a system failure. RealOne Player
takes actions necessary to correct the problem. This may
include shutting down the presentation.

1 Severe Error requiring immediate user intervention to prevent a
problem. RealOne Player will shut down the presentation if
necessary.

2 Critical Error that may require user intervention to correct. RealOne
Player will shut down the presentation if necessary.

3 General Error that does not cause a significant problem with normal
system operation.

4 Warning Warning about a condition that does not cause system
problems but may require attention.

5 Notice Notice about a condition that does not cause system problems
but should be noted.

6 Informational Informational message only.

7 Debug Information of use only when debugging a program.
109

RealOne Player Scripting Guide
GetLastErrorUserCode
Indicates the user error code from the last error.

GetLastErrorUserCode(void)

Returns an int32 that contains the user error code. This method will always
return 0 unless you are using a custom plug-in that provides its own user-
defined error codes for error events.

GetLastErrorUserString
Gets the error string from the last error dialog.

GetLastErrorUserString(void)

Returns a string that contains the last error message. This method will return
nothing unless you are using a custom plug-in that provides its own user-
defined error strings for error events.

GetLastMessage
Gets the text of the last status message that was returned by the OnShowStatus
callback method.

Note: This method is intended for an ActiveX control only. If
you are coding a Netscape plug-in, use the GetLastStatus
method instead.

GetLastMessage(void)

Returns a string that contains the last status message.

GetLastStatus
Gets the text of the last status message that was returned by the OnShowStatus
callback method.

Note: This method is intended for a Netscape plug-in only. If
you are coding an ActiveX control, use the GetLastMessage
method instead.

GetLastStatus(void)

Returns a string that contains the last status message.
110

CHAPTER 6: Embedded Player Methods
GetLength
Indicates the total length of the clip.

GetLength(void)

Returns an int32 that contains the total length of the clip, in milliseconds.
Valid values are >=0.

GetLiveState
Indicates whether the current clip is live.

GetLiveState(void)

Returns true if the current clip is live. Returns false if the current clip is not
live.

GetLoop
Indicates whether the clip has been set to loop.

GetLoop(void)

Returns true if the clip has been set to loop until play is interrupted. Returns
false if the clip does not loop (default).

GetMaintainAspect
Indicates whether or not the aspect ratio of the visual datatype will be
maintained.

GetMaintainAspect(void)

Returns true if the aspect ratio of the visual datatype is maintained. Returns
false (default) if the aspect ratio changes when the image window is stretched.

GetMute
Indicates whether or not the volume has been muted.

GetMute(void)

Returns true if the volume is muted. Returns false if the volume is not muted.
111

RealOne Player Scripting Guide
GetNumEntries
Indicates the total number of entries in the playlist.

GetNumEntries(void)

Warning! The use of this method varies slightly between
programming languages. In C++, this function returns an
int16, while in Java, an int32 value is returned. Either integer
type may be used when developing in Javascript or VBScript.

Returns an int32 that contains the total number of entries in the playlist. The
entry number for a single entry is “1”.

GetNumLoop
Indicates the number of times the clip is set to loop.

GetNumLoop(void)

Returns an int32 that indicates the number of times the clip has been set to
loop by SetNumLoop.

GetNumSources
Indicates the number of sources in the presentation.

GetNumSources(void)

Warning! The use of this method varies slightly between
programming languages. In C++, this function returns an
int16, while in Java, an int32 value is returned. Either integer
type may be used when developing in Javascript or VBScript.

Returns an int32 that contains the number of sources in the presentation.

GetOriginalSize
Indicates whether the image is currently in its original size.

GetOriginalSize(void)

Returns true if the image is its original size. Returns false if the image is not its
original size.
112

CHAPTER 6: Embedded Player Methods
GetPacketsEarly
Returns the total number of packets received from Helix Server before they are
ready to play.

Note: This method is intended for an ActiveX control only.

GetPacketsEarly(void)

Returns an int32 that contains the number of packets that were received too
early.

GetPacketsLate
Indicates the total number of packets received from Helix Server that are too
late to play.

GetPacketsLate(void)

Returns an int32 that contains the number of packets that were received too
late.

GetPacketsMissing
Indicates the total number of packets not received from Helix Server in time to
play.

GetPacketsMissing(void)

Returns an int32 that contains the number of packets that were not received in
time to play.

GetPacketsOutOfOrder
Indicates the total number of packets received from Helix Server out of order.

GetPacketsOutOfOrder(void)

Returns an int32 that contains the total number of out of order packets.

GetPacketsReceived
Indicates the total number of packets that have currently been received from
Helix Server.
113

RealOne Player Scripting Guide
GetPacketsReceived(void)

Returns an int32 that contains the total number of packets received so far.

GetPacketsTotal
Indicates the total number of packets currently used by the presentation. The
total number of packets reported by this method include the number of
received packets plus the number of lost packets. If there are no lost packets,
this method returns the same number as GetPacketsReceived.

GetPacketsTotal(void)

Returns an int32 that contains the total number of packets.

GetPlayState
Indicates the current state of the RealOne Player.

GetPlayState(void)

Returns an int32 value with the following meanings:

• 0 — Stopped

• 1 — Contacting

• 2 — Buffering

• 3 — Playing

• 4 — Paused

• 5 — Seeking

GetPosition
Indicates the current position in the clip.

GetPosition(void)

Returns an int32 that contains the current position in the clip, in
milliseconds. Valid values are >=0 and <=total clip length.

GetPreFetch
Indicates whether or not PREFETCH is enabled.
114

CHAPTER 6: Embedded Player Methods
GetPreFetch(void)

Returns true if PREFETCH is enabled. Returns false if PREFETCH is not enabled.

GetShowAbout
Indicates whether or not the About box is open.

GetShowAbout(void)

Returns true if the About dialog box is visible. Returns false if the dialog box is
not visible.

GetShowPreferences
Indicates whether or not the Preferences dialog box is visible.

GetShowPreferences(void)

Returns true if the Preferences dialog box is visible. Returns false if the dialog
box is not visible.

GetShowStatistics
Indicates whether or not the RealOne Player Statistics dialog box is visible.

GetShowStatistics(void)

Returns true if the RealOne Player Statistics dialog box is visible. Returns false
(default) if the dialog box is not visible.

GetShuffle
Indicates whether or not shuffle play is enabled.

GetShuffle(void)

Returns true if shuffle play is enabled. Returns false if shuffle play is disabled.

GetSource
Indicates the URL of the playing clip.

GetSource(void)

Returns a string that contains the URL of the playing clip.
115

RealOne Player Scripting Guide
GetSourceTransport
Returns a string with the source protocol used for playback.

GetSourceTransport(int32 source_number)

source_number
The number of the source for which a protocol will be specified. This
number can be set between 1 and n, where n is the number of sources
returned by GetNumSources.

Warning! The use of this method varies slightly between
programming languages. In C++, this function requires an
int16 parameter, while in Java, an int32 parameter is required.
Either integer type may be used when developing in Javascript
or VBScript.

Returns a string that identifies the source protocol used for playback (local,
udp, or tcp).

GetStereoState
Indicates whether the current clip is in stereo.

GetStereoState(void)

Returns true if the current clip is in stereo and false for monaural. This
function returns a boolean value for Netscape plug-ins

GetTitle
Indicates the current clip’s title string.

GetTitle(void)

Returns a string that contains the current clip’s title.

GetVersionInfo
Indicates major and minor version information for the embedded RealOne
Player (not the parent RealOne Player).

GetVersionInfo(void)

Returns a string, such as 6.0.0.128, that contains the version information.
116

CHAPTER 6: Embedded Player Methods
GetVolume
Indicates the current volume level.

GetVolume(void)

Warning! The use of this method varies slightly between
programming languages. In C++, this function returns an
int16, while in Java, an int32 value is returned. Either integer
type may be used when developing in Javascript or VBScript.

Returns an int32 that contains the current volume level. The returned value
will be in the range of 0 through 100.

GetWantErrors
Indicates whether error dialogs will be displayed.

GetWantErrors(void)

Returns true if error dialogs are trapped, and therefore not displayed. Returns
false if the error dialogs are displayed.

GetWantKeyboardEvents
Indicates whether keyboard events are sent or not (that is, it indicates whether
the OnKeyDown, OnKeyPress, and OnKeyUp callbacks are to be sent).

GetWantKeyboardEvents(void)

Returns true if the keyboard events are sent. Returns false (default) if the
keyboard events are not sent.

GetWantMouseEvents
Indicates whether or not mouse events are to be sent (that is, whether the
OnLButtonDown, OnLButtonUp, OnMouseMove, OnRButtonDown, and OnRButtonUp
callbacks are to be sent).

GetWantMouseEvents(void)

Returns true if the mouse events are sent. Returns false (default) if the mouse
events are ignored.
117

RealOne Player Scripting Guide
HasNextEntry
Tests if the next clip function is available. The next clip function is available
when the connected source is a RAM (.ram or .rpm) or SMIL file that contains
multiple clips and the current clip is not the last clip in the RAM or SMIL file.
In a SMIL file, a <par> group is treated as a single clip.

HasNextEntry(void)

Returns true if the next clip function is available. Returns false if no more clips
are available after the current clip.

HasPrevEntry
Tests if the previous clip function is available. The previous clip function is
available when the connected source is a RAM (.ram or .rpm) or SMIL file that
contains multiple clips and the current clip is not the first clip in the RAM
file. In a SMIL file, a <par> group is treated as a single clip.

HasPrevEntry(void)

Returns true if the previous clip function is available. Returns false if the
current clip is the first clip.

SetAuthor
Sets the current clip's author string, overriding any existing author
information. GetAuthor subsequently returns this new value.

SetAuthor(string new_author)

new_author
The author string to be set. This author string overrides all subsequent
author information in a multiclip presentation.

Returns a boolean value for plug-ins.

SetAutoGoToURL
Specifies how a URL will be handled. This method is compatible with
RealPlayer version 5.0 and later.

SetAutoGoToURL(boolean enable_start)
118

CHAPTER 6: Embedded Player Methods
Warning! The use of this method varies slightly between
programming languages. In C++, the name of the method is
SetAutoGotoURL, while in Java, the name is SetAutoGoToURL.
Either name may be used when developing in Javascript or
VBScript.

enable_start
If set to true, a RealPlay plug-in automatically forwards the URL event to
the browser. If set to false, the onGoToURL event is handled by a Java applet
or VBScript instead.

For More Information: Beginning with RealPlayer G2, this can
also be set with the AUTOGOTOURL parameter in the <EMBED> or
<OBJECT> tag.

Returns a boolean value for plug-ins.

SetAutoStart
Sets whether or not the control automatically starts playing once the source
data is available. This method is backward-compatible with Netscape plug-ins
and ActiveX controls built with RealPlayer version 5.0 or later.

SetAutoStart(boolean auto_start)

auto_start
If set to true, the control automatically starts playing once the source data
is available. If set to false, the control does not automatically start playing.

Returns a boolean value for plug-ins.

For More Information: If you are developing a Netscape plug-in
in RealPlayer version 5.0 or later, you can also use the
AUTOSTART parameter defined on page 62, to specify automatic
playback in the tag definition.

SetBackgroundColor
Specifies the desired background color for the image window control.

SetBackgroundColor(string color)
119

RealOne Player Scripting Guide
color
The background color of the image window control. Valid values are an
RGB hexadecimal color value in the format #RRGGBB, or the following
color names, shown here with their corresponding RGB values:

Returns a boolean value for plug-ins.

For More Information: You can also use the BACKGROUNDCOLOR
parameter defined on page 62, to specify the background color
of the image window in the tag definition.

SetCanSeek
Sets whether the user can seek within the clip through the user interface.

SetCanSeek(boolean can_seek)

can_seek
If set to true (default), the user can seek within the clip. If set to false, the
user cannot seek within the clip. This function cannot be used to establish
seeking ability for a live or simulated live clip.

Returns a boolean value for plug-ins.

SetCenter
Sets whether or not the visual datatype should be centered at its natural size
within the image window.

SetCenter(boolean value)

value
If set to true, the visual datatype is centered in the image window at its
natural size. If set to false (default), the visual datatype’s height and width
is expanded to fill the image window.

Note: The SetCenter and SetMaintainAspect methods cannot
both be set to true. Therefore, if you have set the set parameter

white (#FFFFFF) silver (#C0C0C0) gray (#808080) black (#000000)

yellow (#FFFF00) fuchsia (#FF00FF) red (#FF0000) maroon (#800000)

lime (#00FF00) olive (#808000) green (#008000) purple (#800080)

aqua (#00FFFF) teal (#008080) blue (#0000FF) navy (#000080)
120

CHAPTER 6: Embedded Player Methods
of the SetMaintainAspect method to true, the value parameter of
the SetCenter method must be set to false.

Returns a boolean value for plug-ins.

For More Information: You can also use the CENTER parameter
defined on page 63, to specify that the presentation should be
centered in the image window, in the tag definition.

 SetConsole
Sets a console name used to link multiple control instances. Call this once for
each instance of a control you want to link. All controls with the same console
name work together. For example, if you have multiple Play and Stop buttons
on the same page, a shared console name enables them to control the same
clip. The console name _master links to all instances. The console name
_unique links to no other instances.

SetConsole(string console)

console
The name of the console to be set. This name must be associated with the
unique name or ID for each embedded control you want to link. For
example:

document.playcontrol.SetConsole(“console1”) — Javascript

Document.playcontrol.SetConsole(“console1”) — VBScript

Returns a boolean value for plug-ins.

For More Information: You can also use the CONSOLE parameter
defined on page 64, to specify whether your controls are linked
in the tag definition.

SetConsoleEvents
Sets whether or not console events are enabled. This method is included to
provide more control of callbacks in plug-ins.

This method does not affect ActiveX controls.

SetConsoleEvents(boolean value)
121

RealOne Player Scripting Guide
value
If set to true, events from any plug-in are sent to the applet. If set to false,
only the plug-in to which the console connects will send events.

Returns a boolean value for plug-ins.

For More Information: See “Event Handling” on page 97 for an
explanation of console events.

SetControls
Sets the visible components of the control.

SetControls(string controls)

controls
The name of the RealOne Player control to be set. This name must be
associated with a unique name or ID for each embedded control. For
example:

document.playcontrol.SetControls(“PlayOnlyButton”) — Javascript

Document.playcontrol.SetControls(“PlayOnlyButton”) — VBScript

Returns a boolean value for plug-ins.

For More Information: You can also use the CONTROLS parameter
defined on page 66, to add controls to your Web page in the
tag definition.

SetCopyright
Sets the current clip's copyright string, overriding any existing copyright
information. GetCopyright subsequently returns this new value.

SetCopyright(string copyright)

copyright
The copyright string to be set. This copyright string overrides all
subsequent copyright information in a multiclip presentation.

Returns a boolean value for plug-ins.

SetDoubleSize
Sets the image window to double its original size.
122

CHAPTER 6: Embedded Player Methods
SetDoubleSize(void)

Returns a boolean value for plug-ins.

Note: This method is included only for ActiveX controls and
plug-ins used in applications; this method is not intended for
use in Web pages.

SetFullScreen
Sets the image to full-screen mode.

SetFullScreen(void)

Returns a boolean value for plug-ins.

Note: The user presses the Esc key to reduce the image back to
its original size.

SetImageStatus
Enables or disables the status text that is written along the bottom of the
image window.

SetImageStatus(boolean enabled)

enabled
If set to true (default), the status text is written to the image window. If set
to false, the status text is not sent to the image window.

Returns a boolean value for plug-ins.

SetLoop
Specifies whether the clip will loop or not.

SetLoop(boolean set)

set
If set to true, the clip loops until play is interrupted. If set to false, the clip
does not loop (default).

Returns a boolean value for plug-ins.
123

RealOne Player Scripting Guide
For More Information: In the tag definition, you can also use the
LOOP parameter defined on page 67, to specify whether the clip
should loop.

SetMaintainAspect
Sets whether or not to maintain the correct aspect ratio of the source within
the image window when the image window is stretched.

SetMaintainAspect(boolean set)

set
If set to true, the correct aspect ratio of the source is maintained. If set to
false (default), the aspect ratio is changed so the source fills the image
window.

Note: The SetMaintainAspect and SetCenter methods cannot
both be set to true. Therefore, if you have set the value
parameter of the SetCenter method to true, the set parameter of
the SetMaintainAspect method must be set to false.

Returns a boolean value for plug-ins.

For More Information: You can also use the MAINTAINASPECT
parameter defined on page 68 to specify whether the correct
aspect ratio should be maintained.

SetMute
Sets the mute state.

SetMute(boolean mute)

mute
If set to true, the audio is muted. If set to false, the sound is not muted.

Returns a boolean value for plug-ins.

SetNumLoop
Sets number of times to loop the clip.

SetNumLoop(int32 number_of_loops)
124

CHAPTER 6: Embedded Player Methods
number_of_loops
The number of times for the clip to loop.

Returns a boolean value for plug-ins.

For More Information: You can also use the NUMLOOP parameter
defined on page 70, to specify the number of times the
presentation should loop, in the tag definition.

SetOriginalSize
Sets the image window to its original size.

SetOriginalSize(void)

Returns a boolean value for plug-ins.

SetPosition
Seeks into the clip to the specified point.

SetPosition(int32 position)

position
The point in the clip to which to seek, in milliseconds. Valid values are >=0
through <=total clip length. If an attempt is made to set the position >total

length, then SetPosition will equal total length.

Note: Be sure to wait for the seek to finish before continuing
with any programming that requires the clip to be at the point
specified by this method.

Returns a boolean value for plug-ins.

SetPreFetch
Enables or disables PREFETCH playback mode.

SetPreFetch(boolean set)

set
If set to true, PREFETCH playback mode is enabled. If set to false (default),
PREFETCH playback mode is disabled.

Returns a boolean value for plug-ins.
125

RealOne Player Scripting Guide
For More Information: You can also use the PREFETCH parameter
defined on page 71, to specify whether prefetch playback mode
is enabled, in the tag definition.

SetShowAbout
Displays the RealOne Player About dialog box.

SetShowAbout(boolean set)

set
If set to true, the RealOne Player About dialog box is displayed. Setting
this parameter to false while the dialog box is displayed does nothing; you
must close the display using the buttons available in the dialog box.

Returns a boolean value for plug-ins.

SetShowPreferences
Opens the RealOne Player environment and displays the RealOne Player
Preferences dialog box.

SetShowPreferences(boolean set)

set
If set to true, the RealOne Player Preferences dialog box is displayed.
Setting this parameter to false while the dialog box is displayed does
nothing; you must close the display using the buttons available in the
dialog box.

Returns a boolean value for plug-ins.

SetShowStatistics
Sets the RealOne Player Statistics dialog box to visible.

SetShowStatistics(boolean set)

set
If set to true, the RealOne Player Statistics dialog box is displayed. If set to
false and the RealOne Player Statistics dialog box is visible, the dialog box
will be closed.

Returns a boolean value for plug-ins.
126

CHAPTER 6: Embedded Player Methods
SetShuffle
Randomizes playback of all clips, excluding clips that have already played.
Works for multiclip RAM files (.ram or .rpm) or SMIL files that contain only a
sequence of clips.

SetShuffle(boolean set)

set
If set to true, clip playback is randomized. If set to false, the clips are played
back in the order in which they appear in the multiclip RAM file or SMIL
file.

Returns a boolean value for plug-ins.

For More Information: You can also use the SHUFFLE parameter
defined on page 74, to specify whether clip playback should be
randomized, in the tag definition.

SetSource
Specifies the URL of the clip to play. This method is backward-compatible
with Netscape plug-ins built with RealPlayer version 5.0 or later, but not
compatible with version 5.0 ActiveX controls

SetSource(string source)

source
The URL of the clip to play. The source URL can begin with rtsp://,
http://, pnm://, or file://.

Returns a boolean value for plug-ins.

For More Information: You can also use the SRC parameter
defined on page 74, to specify the URL of the presentation, in
the tag definition.

SetTitle
Sets the current clip's title string, overriding any existing title information.
GetTitle subsequently returns this new value.

SetTitle(string title)
127

RealOne Player Scripting Guide
title
The title string to be set. This title string overrides all subsequent title
information in a multiclip presentation.

Returns a boolean value for plug-ins.

SetVolume
Sets the volume level.

SetVolume(int16 volume)

volume
The volume level to be set. Valid values are 0 through 100.

Warning! The use of this method varies slightly between
programming languages. In C++, this function requires an
int16 parameter, while in Java, an int32 parameter is required.
Either integer type may be used when developing in Javascript
or VBScript.

Returns void.

SetWantErrors
Sets the error sink.

SetWantErrors(boolean set)

set
If set to true, the errors are trapped and no error dialogs occur in the
player. If set to false, error dialogs are displayed in the player.

Returns a boolean value for plug-ins.

SetWantKeyboardEvents
Sets whether or not keyboard events are to be sent (that is, it sets whether the
OnKeyDown, OnKeyPress, and OnKeyUp callbacks are to be sent).

SetWantKeyboardEvents(boolean set)

set
If set to true, the keyboard events will be sent. If set to false (default), the
keyboard events will not be sent.
128

CHAPTER 6: Embedded Player Methods
Returns a boolean value for plug-ins.

SetWantMouseEvents
Sets whether or not mouse events are to be sent (that is, whether the
OnLButtonDown, OnLButtonUp, OnMouseMove, OnRButtonDown, and OnRButtonUp
callbacks are to be sent).

SetWantMouseEvents(boolean set)

set
If set to true, the mouse events are sent. If set to false (default), the mouse
events are not sent.

Returns a boolean value for plug-ins.
129

RealOne Player Scripting Guide
130

C H A P T E R

7

 Chapter 7: EMBEDDED PLAYER CALLBACKS
This chapter describes the RealPlayer callback methods sent to
inform an application or script that a RealPlayer event has occurred.
The callback methods are listed here in alphabetical order and each
description contains information about how to use the callback in
your Netscpae plug-in or ActiveX control, an example of syntax and
usage, and backward compatibilty tips for various API versions.

For More Information: For information about categories of
callback methods, such as those used to handle user
interactions with your presentation, see Chapter 5.

OnAuthorChange
Sent when the author string changes.

OnAuthorChange(string author)

author
The new author string.

Returns void.

OnBuffering
Sends a percentage of the buffering that has completed.

OnBuffering(int32 flags, int32 percent_complete)

flags
The buffering flags. One of the following values:

• 0 — Buffering start up.

• 1 — Buffering resulting from a seek.

• 2 — Buffering resulting from network congestion.
131

RealOne Player Scripting Guide
• 3 — Buffering resulting from resuming after pausing a live
presentation.

Note: If you are programming in C++, use the values of the
flags found in the BUFFERING_REASON enumerator in
rmacore.h (supplied with the SDK).

percent_complete
The amount of buffering that is complete, in percent.

Warning! The use of this method varies slightly between
programming languages. In C++, the datatype of this
parameter is int32, while in Java, the datatype is int16. Either
datatype may be used when developing in Javascript or
VBScript.

Returns void.

OnClipClosed
Sent to indicate that no clip is currently opened by the control. This method is
compatible with RealPlayer version 5.0 and later.

OnClipClosed(void)

Warning! The use of this method varies slightly between
programming languages. In C++, the name of the method is
OnClipClosed, while in Java and Javascript, the name is
onClipClosed.

Returns void.

OnClipOpened
Sent when a clip is opened by the control. This method is compatible with
RealPlayer version 5.0 and later.

OnClipOpened(string short_clip_name, string url)

Warning! The use of this method varies slightly between
programming languages. In C++, the name of the method is
OnClipOpened, while in Java and Javascript, the name is
onClipOpened.
132

CHAPTER 7: Embedded Player Callbacks
short_clip_name
The name of the clip that is opened.

url
The URL of the clip that is opened.

Returns void.

OnContacting
Sent when RealPlayer contacts a host.

OnContacting(string host_name)

host_name
The host name string.

Returns void.

OnCopyrightChange
Sent when the copyright string changes.

OnCopyrightChange(string copyright)

copyright
The new copyright string.

Returns void.

OnErrorMessage
Sent when an error occurs.

OnErrorMessage(
 int16 severity,
 int32 rma_code,
 int32 user_code,
 string user_string,
 string more_info_url,
 string error
)

severity
The error level for the last error. See GetLastErrorSeverity on page 109 for
more information about severity levels.
133

RealOne Player Scripting Guide
rma_code
The RMA error code from the last error. RMA error codes are described in
the header file pnresult.h in the SDK. In normal operation, all components
need to be able to handle the following basic codes that may be returned
by Helix Server:

• PNR_FAIL — Operation failed.

• PNR_OK — Operation succeeded.

• PNR_UNEXPECTED — Call was unexpected or method is not
implemented.

user_code
The user error code from the last error. For more information, see
GetLastErrorUserCode on page 110.

user_string
The error string from the last error dialog. For more information, see
GetLastErrorUserString on page 110.

more_info_url
The “more info” URL from the last error. This may be nothing (for
example, if there is no “more info” URL).

error
A text description of the error.

Returns void.

OnGotoURL
Sent when an URL event is encountered for the RealPlayer clip currently
playing. This event occurs only if the AutoGotoURL setting is FALSE. (This setting
is modified either by using the AUTOGOTOURL parameter in the <EMBED> or
<OBJECT> tag, or by using the SetAutoGoToURL method.)

This method is compatible with RealPlayer version 5.0 and later.

OnGotoURL(string url, string target)

Warning! The use of this method varies slightly between
programming languages. In C++, the name of the method is
OnGotoURL, while in Java and Javascript, the name is onGoToURL.
134

CHAPTER 7: Embedded Player Callbacks
url
Contains the URL that would have been sent to the browser if AutoGotoURL
were TRUE.

target
The name of the browser or frame the URL should have been opened in if
AutoGotoURL were TRUE.

Returns void.

OnKeyDown
Sent when the user presses and holds down a keyboard key. This callback
method is only sent when the set parameter of the SetWantKeyboardEvents (see
page 128) method is set to true.

OnKeyDown(int32 flags, int32 key)

Warning! When programming in Java or Javascript, the flags
parameter is not available. The proper syntax is:
OnKeyDown(int32 key).

flags
The bit f lags for the key press. Windows defines the values for this
parameter in the Windows Platform SDK from Microsoft, under the
WM_CHAR message.

key
The key code for the key that was pressed and held.

Returns void.

OnKeyPress
Sent when the user presses and releases a keyboard key. This callback method
is only sent when the set parameter of the SetWantKeyboardEvents (see page
128) method is set to true.

OnKeyPress(int32 flags, int32 key)

Warning! When programming in Java or Javascript, the flags

parameter is not available. The proper syntax is:
OnKeyPress(int32 key).
135

RealOne Player Scripting Guide
flags
The bit f lags for the key press. Windows defines the values for this
parameter in the Windows Platform SDK from Microsoft, under the
WM_CHAR message.

key
The key code for the key that was pressed and released.

Returns void.

OnKeyUp
Sent when user releases keyboard key. This callback method is only sent when
the set parameter of the SetWantKeyboardEvents (see page 128) method is set to
true.

OnKeyUp(int32 flags, int32 key)

Warning! When programming in Java or Javascript, the flags
parameter is not available. The proper syntax is:
OnKeyUp(int32 key).

flags
The bit f lags for the key press. Windows defines the values for this
parameter in the Windows Platform SDK from Microsoft, under the
WM_CHAR message.

key
The key code for the key the user has released.

Returns void.

OnLButtonDown
Sent when the user holds down the left mouse button when the cursor is
placed over the embedded component. This callback method is only sent
when the set parameter of the SetWantMouseEvents (see page 129) method is set
to true.

OnLButtonDown(int32 button_flags, int32 x_pos, int32 y_pos)

button_flags
The bit f lags for mouse and mouse button events.
136

CHAPTER 7: Embedded Player Callbacks
The following table lists the possible values for the button_flags parameter.

x_pos
The x position of the mouse when the left button is pressed.

y_pos
The y position of the mouse when the left button is pressed.

Returns void.

OnLButtonUp
Sent when the user releases the left mouse button while the cursor is
positioned over the embedded component. This callback method is only sent
when the set parameter of the SetWantMouseEvents (see page 129) method is set
to true.

OnLButtonUp(int32 button_flags, int32 x_pos, int32 y_pos)

button_flags
The bit f lags for mouse and mouse button events. For a list of possible
values for this parameter, see Table , “Parameter Values for the Possible
Mouse Button Events,” on page 137.

x_pos
The x position of the mouse when the left mouse button is released.

y_pos
The y position of the mouse when the left mouse button is released.

Returns void.

Parameter Values for the Possible Mouse Button Events

Bit Flat Value Mouse Button Event

MK_LBUTTON The left mouse button is pressed.

MK_RBUTTON The right mouse button is pressed.

MK_SHIFT The Shift key on the keyboard is pressed.

MK_CONTROL The Ctrl key on the keyboard is pressed.

MK_MBUTTON The middle mouse button is pressed.
137

RealOne Player Scripting Guide
OnMouseMove
Sent when the user moves the mouse cursor over the embedded component.
This callback method is only sent when the set parameter of the
SetWantMouseEvents (see page 129) method is set to true.

Note: This callback is sent when the operating system notifies
the plug-in or ActiveX control that the mouse has moved.

OnMouseMove(int32 button_flags, int32 x_pos, int32 y_pos)

button_flags
The bit f lags for mouse and mouse button events. For a list of possible
values for this parameter, see Table , “Parameter Values for the Possible
Mouse Button Events,” on page 137.

x_pos
The x position of the mouse.

y_pos
The y position of the mouse.

Returns void.

OnMuteChange
Sent when the volume is muted or unmuted.

OnMuteChange(boolean mute)

mute
If true, the volume is muted. If false, the volume is restored.

Returns void.

OnPlayStateChange
Sent when the play state of the presentation in RealPlayer changes.

OnPlayStateChange(int32 old_state, int32 new_state)

Warning! When programming an ActiveX control, the
old_state parameter is not available. The proper syntax is:
OnPlayStateChange(int32 new_state). If your ActiveX application
requires both the old_state and new_state parameters, use the
OnStateChange on page 142 callback instead.
138

CHAPTER 7: Embedded Player Callbacks
old_state
The previous play state.

new_state
The current play state.

The following table lists the possible values for the old_state and new_state
parameters:

Returns void.

OnPosLength
Sent when the position in the clip changes.

OnPosLength(int32 pos, int32 len)

Note: This callback is intended for a Netscape plug-in only. If
you are coding an ActiveX control, use the OnPositionChange on
page 139 callback instead.

pos
The current position of the clip, in milliseconds.

len
The length of the clip, in milliseconds.

Returns void.

OnPositionChange
Sent when the position in the clip changes.

OnPositionChange(int32 pos, int32 len)

Parameter Values for the Possible Play States

Parameter Value Play State

0 Stopped

1 Contacting

2 Buffering

3 Playing

4 Seeking
139

RealOne Player Scripting Guide
Note: This callback is intended for an ActiveX control only. If
you are coding a Netscape plug-in, use the OnPosLength on page
139 callback instead.

pos
The current position of the clip, in milliseconds.

len
The length of the clip, in milliseconds.

Returns void.

OnPostSeek
Sent when a seek completes.

OnPostSeek(int32 old_time, int32 new_time)

old_time
The presentation time, in milliseconds, before the seek occurred.

new_time
The presentation time, in milliseconds, after the seek occurred.

Returns void.

OnPreFetchComplete
Sent when the component has fetched the stream header information. Called
if PREFETCH is set to true in the <EMBED> or <OBJECT> tag or if the set parameter
of the SetPreFetch (see page 125) method is set to true.

OnPreFetchComplete(void)

Returns void.

OnPreSeek
Sent when the user performs a seek by moving the presentation position
slider.

OnPreSeek(int32 old_time, int32 new_time)

old_time
The presentation time, in milliseconds, when the seek occurred.
140

CHAPTER 7: Embedded Player Callbacks
new_time
The time, in milliseconds, to which the presentation is seeking.

Returns void.

OnPresentationClosed
Sent when the presentation stops.

OnPresentationClosed(void)

Returns void.

OnPresentationOpened
Sent when the presentation starts.

OnPresentationOpened(void)

Returns void.

OnRButtonDown
Sent when the user holds down the right mouse button while the cursor is
positioned over the embedded component. This callback method is only sent
when the set parameter of the SetWantMouseEvents (see page 129) method is set
to true.

OnLButtonDown(int32 button_flags, int32 x_pos, int32 y_pos)

button_flags
The bit f lags for mouse and mouse button events. For a list of possible
values for this parameter, see the table “Parameter Values for the Possible
Mouse Button Events” on page 137.

x_pos
The x position of the mouse when the right button is pressed.

y_pos
The y position of the mouse when the right button is pressed.

Returns void.
141

RealOne Player Scripting Guide
OnRButtonUp
Sent when the user releases the right mouse button while the cursor is
positioned over the embedded component. This callback method is only sent
when the set parameter of the SetWantMouseEvents (see page 129) method is set
to true.

OnRButtonUp(int32 button_flags, int32 x_pos, int32 y_pos)

button_flags
The bit f lags for mouse and mouse button events. For a list of possible
values for this parameter, see the table “Parameter Values for the Possible
Mouse Button Events” on page 137.

x_pos
The x position of the mouse when the right mouse button is released.

y_pos
The y position of the mouse when the right mouse button is released.

Returns void.

OnShowStatus
Sent to indicate that the status text is changing. This method is compatible
with RealPlayer version 5.0 and later.

OnShowStatus(string status_text)

Warning! The use of this method varies slightly between
programming languages. In C++, the name of the method is
OnShowStatus, while in Java and Javascript, the name is
onShowStatus.

status_text
The new status text.

Returns void.

OnStateChange
Sent when the play state of the presentation in RealPlayer changes.
142

CHAPTER 7: Embedded Player Callbacks
Note: This callback is intended for an ActiveX control only. If
you are coding a Netscape plug-in, use the OnPlayStateChange
on page 138 callback instead.

OnStateChange(int32 old_state, int32 new_state)

old_state
The previous play state.

new_state
The current play state.

For a list of possible values for the old_state and new_state parameters, see
Table , “Parameter Values for the Possible Play States,” on page 139.

Returns void.

OnTitleChange
Sent when the title string changes.

OnTitleChange(string title)

title
The new title string.

Returns void.

OnVolumeChange
Sent when the volume level changes.

OnVolumeChange(int32 new_volume)

new_volume
The new volume level. The valid volume range is 0 through 100, where 0
represents no volume.

Warning! The use of this method varies slightly between
programming languages. In C++, the datatype of this
parameter is int16, while in Java, the datatype is int32. Either
datatype may be used when developing in Javascript or
VBScript.

Returns void.
143

RealOne Player Scripting Guide
144

GLOSSARY
B bandwidth
The upper limit on the amount of data, typically expressed as kilobits per
second (Kbps), that can pass through a network connection.

bit
The smallest unit of measure of data in a computer. A bit has a binary
value, either 0 or 1.

bit rate
A measure of bandwidth, expressed as the number of bits transmitted per
second. A 28.8 Kbps modem, for example, can transmit or receive around
29,000 bits per second.

broadcast
To deliver a presentation, whether live or prerecorded, in which all viewers
join the presentation in progress. Contrast to on-demand.

buffering
The receiving and storing of data before it is played back. A clip’s initial
buffering is called preroll. After this preroll, excessive buffering may stall
the presentation.

byte
A common measurement of data. One byte consists of 8 bits.

C cable modems
Devices that allow rapid transmission and reception of data over
television cable. They are digital devices, unlike dial-up modems, which
transmit analog data.

client
A software application that receives data from a server. A Web browser is a
client of a Web server. RealOne Player is a client of Helix Server.

clip
A media file within a presentation. Clips typically have an internal
timeline, as with RealAudio and RealVideo.
145

RealOne Player Scripting Guide
codec
Coder/decoder. Codecs convert data between uncompressed and
compressed formats, reducing the bandwidth a clip consumes.

D download
To send a file over a network with a nonstreaming protocol such as HTTP.
Contrast to stream.

DSL
Digital Subscriber Line. A technology for transmitting digital data over a
regular telephone line at speeds much faster than dial-up modems.

E encoding
Converting a file into a compressed, streaming format. For example, you
can encode WAV files as RealAudio clips.

events file
A text file that specifies URLs to display at specific points as a RealAudio
or RealVideo clip plays. A utility included with Helix Producer events file
is merged into the clip using a utility.

F Flash
A software application and an animation format created by Macromedia.
RealOne Player can play Flash animations and stream them in parallel
with other clips, such as RealAudio clips.

H Helix Producer
The primary RealNetworks tool for encoding RealAudio and RealVideo
clips.

Helix Server
RealNetworks server software used to stream multimedia presentations to
RealOne Player.

HTTP
Hypertext Transport Protocol. The protocol used by Web servers to
communicate with Web browsers. In contrast, Helix Server streams clips
to RealOne Player with RTSP.
146

 Glossary
K kilobit (Kb)
A common unit of data measurement equal to 1024 bits. A kilobit is
usually referred to in the context of bit rate per unit of time, such as
kilobits per second (Kbps).

kilobyte (KB)
A common unit of data measurement equal to 1024 bytes or 8 kilobits.

O on-demand
A type of streaming in which a clip plays from start to finish when a user
clicks a link. Most clips are streamed this way. Contrast to broadcast.

P prefetch
To stream clip data to RealOne Player before the clip plays back. A clip’s
preroll can be prefetched minutes before the clip plays, for example,
masking the preroll from the viewer.

preroll
Buffering that occurs just before a clip plays back. Preroll should be no
more than 15 seconds.

presentation
A clip or group of clips streamed from Helix Server to RealOne Player. The
presentation can also include HTML URLs that open in the RealOne
Player HTML windows.

R RealAudio
A clip type for streaming audio over a network. RealAudio clips use the .rm
extension.

RealOne Player
The successor to RealPlayer 8, the RealOne Player combines streaming
and digital download technologies. It supports the SMIL 2.0 standard.

RealPix
A clip type (file extension .rp) for streaming still images over a network.
RealPix uses a markup language for creating special effects such as fades
and zooms.

RealPlayer G2
The RealNetworks client software that introduced plug-ins and the ability
to update itself. It, along with the later RealPlayer 7 and RealPlayer 8,
supports the SMIL 1.0 standard.
147

RealOne Player Scripting Guide
RealText
A clip type (file extension .rt) for streaming text over a network. It uses a
markup language for formatting text.

RealVideo
A clip type for streaming video over a network. RealVideo clips use the
extension .rm.

RTP
Real-Time Protocol. The open, standards-based data package protocol
Helix Server uses (along with RTSP) to communicate with RTP-based
clients. Contrast to RealAudio.

RTSP
Real-Time Streaming Protocol. An open, standards-based control protocol
that Helix Server uses to stream clips to RealOne Player or any RTP-based
client. Contrast to HTTP.

S server
1. A software application, such as a Web server or Helix Server, that sends
requested data over a network.

2. A computer that runs server software.

SMIL
Synchronized Multimedia Integration Language. A markup language for
specifying how and when each clip plays within a presentation. SMIL files
use the extension .smil.

stream
1. To send a media clip over a network so that it begins playing back as
quickly as possible.

2. A flow of a single type of data, measured in kilobits per second (Kbps).
A RealVideo clip’s soundtrack is one stream, for example.

SureStream
A RealNetworks technology that enables a RealAudio or RealVideo clip to
stream at multiple bit rates.

U URL
Uniform Resource Locator. A location description that enables a Web
browser or RealOne Player to receive a clip stored on a Web server or Helix
Server.
148

 Glossary
V visualization
An animation built into RealOne Player that the viewer can display when
playing audio-only clips.
149

RealOne Player Scripting Guide
150

INDEX
A About dialog box, 93
accessing the RealOne Player environment,

16
actions, handling, 23
ActiveX

in RealOne Player environment, 16
playing a clip, 18
using, 16
using in embedded player, 59

AddToNowPlaying, 33
appending HTML URLs, 13
artist information, hiding, 23
audio, controlling, 94
author information, 90

B background color
in embedded player, 62
in RealOne environment, 23

backward compatibility, 52, 79
bandwidth, 95
broadcast, live, 92
browser requirements, 53
buffering

event handler, 29
getting time, 88

C caching URLs, 22
callbacks

embedded, 54
handling with LiveConnect, 58
handling with SCRIPTCALLBACKS, 57
Javascript, 56
VBScript, 60

CanPause, 99
CanPlay, 99

CanStop, 100
clearing Now Playing list, 21
ClearNowPlaying, 34
clip information

getting, 27
while playing, 19

clip position, 30
clips, preloading, 30
component version, 25
components, installed player, 28
ComponentVersion, 35
console events, 98
content information, playlist, 91
control attributes, 89
controlling content, 14
controlling interactions, 12
controls, naming, 56
copyright information, 90
customizing playback, 17

D determining playback status, 87
display size, setting, 94
displaying HTML pages using SMIL, 14
documentation library, 4
DoGotoURL, 100
DoNextEntry, 100
DoPause, 101
DoPlay, 101
DoPrevEntry, 101
DoStop, 101
dynamically opening URLs, 17

E <EMBED> tag syntax, 55
embedded callbacks, 54
151

RealOne Player Scripting Guide
embedded controls, naming, 56
embedded markup, 53
embedded methods, 54
embedded player, 52

author information, 90
controlling volume, 95
copyright information, 90
event handling, 97, 98
handling errors, 93
playback bandwidth, 95
seeking, 90
setting display size, 94
specifying width and height, 55, 59
title information, 90
using <EMBED> tag, 55
VBScript, 60
version information, 96

embedded presentation, controlling, 56
embedding

browser requirements, 53
how it works, 51
HTML URLs in a clip, 13
overview of scripting methods, 53
source file, 55

entries in playlist, 91
environment, three-pane, 9
Equalizer dialog box, 23
error handling, embedded player, 93
errors, more info URL, 93
event handling

ActiveX controls, 60
buffering, 29
embedded methods, 97
Javascript, 56
Netscape plug-in, 56

multiple plug-ins, 57
preload, 30
RealOne Player environment, 29
state change, 31
time position, 30

example files, 2

F full screen mode, 94

G GetAuthor, 101
GetAutoGotoURL, 101
GetAutoStart, 102
GetBackgroundColor, 102
GetBandwidthAverage, 102
GetBandwidthCurrent, 102
GetBufferingTimeElapsed, 103
GetBufferingTimeRemaining, 103
GetCanSeek, 103
GetCenter, 103
GetClipHeight, 103
GetClipInfo, 36
GetClipWidth, 104
GetConnectionBandwidth, 104
GetConsole, 104
GetConsoleEvents, 104
GetControls, 104
GetCopyright, 105
GetCurrentEntry, 105
GetDoubleSize, 106
GetEntryAbstract, 106
GetEntryAuthor, 106
GetEntryCopyright, 107
GetEntryTitle, 107
GetFullScreen, 108
GetImageStatus, 108
GetLastErrorMoreInfoURL, 108
GetLastErrorRMACode, 108
GetLastErrorSeverity, 109
GetLastErrorUserCode, 110
GetLastErrorUserString, 110
GetLastMessage, 110
GetLastStatus, 110
GetLength, 111
GetLiveState, 111
GetLoop, 111
GetMaintainAspect, 111
GetMute, 111
GetNumEntries, 112
GetNumLoop, 112
GetNumSources, 112
GetOriginalSize, 112
152

 Index
GetPacketsEarly, 113
GetPacketsLate, 113
GetPacketsMissing, 113
GetPacketsOutOfOrder, 113
GetPacketsReceived, 113
GetPacketsTotal, 114
GetPlayerState, 37
GetPlayState, 114
GetPosition, 114
GetPreFetch, 114
GetShowAbout, 115
GetShowPreferences, 115
GetShowStatistics, 115
GetShuffle, 115
GetSource, 115
GetSourceTransport, 116
GetStereoState, 116
getting clip information, 27
getting player properties, 27
getting the player state

embedded player, 88
RealOne environment, 28

GetTitle, 116
GetVersionInfo, 116
GetVolume, 117
GetWantErrors, 117
GetWantKeyboardEvents, 117
GetWantMouseEvents, 117

H HandleAction, 37
handlers, 29
handling actions, 23
handling errors, embedded player, 93
HasNextEntry, 118
HasPrevEntry, 118
height and width

ActiveX control, 59
Netscape plug-in, 55
related info pane, 20

how embedding works, 51
HTML Help version of this guide, 2
HTML pages

see also media browser pane

see also related info pane
HTML panes, 14
HTML+Javascript version of this guide, 2

I image window, 81
installed player components, 28
InstalledComponents, 39
interactions, controlling, 12

J Java, 58
Javascript

for embedded player, 54
in RealOne Player environment, 16

K keyboard events, 98

L live broadcast, 92
LiveConnect, 58
local file links, 75

M manuals, where to find, 4
media

handling clip buffering, 29
preparation, 53
URLs, 13

media browser pane
as secondary window, 20
Now Playing list, 12
opening a URL, 21
overview, 11
secondary windows, 12

media playback pane
overview, 10
supported technologies, 10

methods
custom playback, 18
embedded, 54
opening URLs, 18
using RealOne Player, 17

more info URL for errors, 93
mouse events, 98
moving in a playlist, 91
multi-clip presentations, 91
153

RealOne Player Scripting Guide
multiple HTML pages, 11
muting audio, 95

N naming embedded controls, 56
navigate to URL, 23
Netscape Navigator 6

handling events, 56
missing plug-in search, 75

Netscape plug-in, using, 55
network information, 95
Now Playing list, 12

adding clip, 20
clearing, 21
using, 21

O <OBJECT> tag
for RealOne environment, 17
parameters, 59
syntax, 59
using, 60

OnAuthorChange, 131
OnBuffering, 131
OnClipClosed, 132
OnClipOpened, 132
OnContacting, 133
OnCopyrightChange, 133
OnErrorMessage, 133
OnGoToURL, 134
OnKeyDown, 135
OnKeyPress, 135
OnKeyUp, 136
OnLButtonDown, 136
OnLButtonUp, 137
OnMouseMove, 138
OnMuteChange, 138
OnPlayStateChange, 138
OnPositionChange, 139
OnPosLength, 139
OnPostSeek, 140
OnPreFetchComplete, 140
OnPreSeek, 140
OnPresentationClosed, 141
OnPresentationOpened, 141

OnRButtonDown, 141
OnRButtonUp, 142
OnShowStatus, 142
OnStateChange, 142
OnTitleChange, 143
OnVolumeChange, 143
opening URLs, 17
optional parameters, PlayClip, 21

P packed version information, 25
packet information from network, 96
parameters for <OBJECT> tag, 59
passing URLs, 61
pause control, using, 87
PDF version of this guide, 2
play control, 87
playback

bandwidth, 95
controlling, 87
customizing, 17
determining status, 87

PlayClip, 18, 40
unused optional parameters, 21

player
displaying status, 88
embedded, 52
getting properties, 27
installed components, 28

player state
in RealOne environment, 28
in the embedded player, 88

PlayerProperty, 42
playing a clip, 18

adding to Now Playing list, 20
browsing a web page, 19
displaying clip info, 19
displaying related info, 19

playlist information, 91
position, current clip, 30
Preferences dialog box

from embedded player, 92
from RealOne environment, 23

preload event handler, 30
preloading URLs, 22
154

 Index
PreloadURL, 43
presentation sources, 96

Q QuickTime and SMIL, 13

R RealOne Player
event handlers, 29
methods, 17
retrieving information, 24
version, 24

RealOne Player environment
accessing, 16
playing a clip, 18

RealPlayerVersion, 43
receiving callbacks

Javascript, 56
VBScript, 60

related info pane
overview, 11
preserve previous information, 20
setting the size, 20

retrieving information, RealOne Player, 24
RPOnBuffering, 45
RPOnPositionLengthChange, 45
RPOnPreload, 46
RPOnStateChange, 46

S sample files, 2
scripting languages, embedded player, 54
seeking, 90
SetAuthor, 118
SetAutoGoToURL, 118
SetAutoStart, 119
SetBackgroundColor, 119
SetCanSeek, 120
SetCenter, 120
SetConsole, 121
SetConsoleEvents, 121
SetControls, 122
SetCopyright, 122
SetDoubleSize, 122
SetFullScreen, 123
SetImageStatus, 123

SetLoop, 123
SetMaintainAspect, 124
SetMute, 124
SetNumLoop, 124
SetOriginalSize, 125
SetPosition, 125
SetPreFetch, 125
SetShowAbout, 126
SetShowPreferences, 126
SetShowStatistics, 126
SetShuffle, 127
SetSource, 127
SetTitle, 127
SetVideoBackgroundColor, 44
SetVolume, 128
SetWantErrors, 128
SetWantKeyboardEvents, 128
SetWantMouseEvents, 129
severity, errors, 94
simple links to open URLs, 15
size of related info pane, 20
SMIL

in embedded presentations, 52
using, 14

source file, embedding, 55
sources in presentation, 96
state change, 31
Statistics dialog box, 93
status of playback, 87
stereo state, 95
stop control, 87
streaming media

appending HTML URLs, 13
displaying HTML pages, 12
embedding HTML URLs in a clip, 13
using SMIL, 14

T Tag Parameter
AUTOGOTOURL, 61
AUTOSTART, 62
BACKGROUNDCOLOR, 62
CENTER, 63
CLASSID, 64
155

RealOne Player Scripting Guide
CONSOLE, 64
CONTROLS, 66
HEIGHT, 66
ID, 67
LOOP, 67
MAINTAINASPECT, 68
NAME, 69
NOJAVA, 69
NUMLOOP, 70
PARAM, 71
PREFETCH, 71
REGION, 72
SCRIPTCALLBACKS, 73
SHUFFLE, 74
SRC, 74
TYPE, 77
WIDTH, 78

three-pane environment, 9
time position, determining current, 30
title information, 90
trapping error messages, 93

U unpacking version information, 25
URLs

opening, 17
passing to presentations, 61
preloading, 22

user-defined error messages, 94
using <EMBED> tag, 55
using <OBJECT> tag, 60

V VBScript
extending embedded controls, 60
for embedded player, 54

version
component, 25
embedded player, 96
in RealOne Environment, 24
unpacking, 25

volume control, 95

W Web pages, see HTML pages
width and height

ActiveX control, 59

Netscape plug-in, 55
related info pane, 20

Windows Media and SMIL, 13
156

	Introduction
	What is Helix?
	System Components
	How to Download This Guide to Your Computer
	How This Guide Is Organized
	Conventions Used in this Guide
	Additional Documentation Resources
	Technical Support
	RealForum

	RealOne Player Environment
	The Three-Pane Environment
	The Media Playback Pane
	The Related Info Pane
	The Media Browser Pane
	Now Playing List
	Secondary Browsing Windows

	Controlling Interactions Between RealOne Player Panes
	Displaying HTML Pages Through Streaming Media
	Appending HTML URLs to Media URLs in a Ram File
	Embedding HTML URLs In a RealVideo or RealAudio Clip
	Using SMIL to Display HTML Pages

	Controlling Content Through the HTML Panes
	Opening URLs with Simple Links
	Javascript and ActiveX Methods

	Using Javascript and ActiveX in the RealOne Player Environment
	Using Javascript Methods and Events
	Using ActiveX Controls

	Using RealOne Player Methods
	Customizing Playback and Dynamically Opening URLs
	Playing a Clip
	Using the Now Playing List
	Opening a URL in the Media Browser Pane
	Caching URLs to Enhance Playback Performance
	Handling Actions
	Setting the Background Color

	Retrieving RealOne Player Information
	Retrieving Version Information
	Unpacking Version Information
	Getting Player Information
	Displaying Clip Information
	Determining Installed Player Components

	Using RealOne Player Event Handlers
	Handling Media Clip Buffering
	Determining the Current Time Position
	Performing Tasks Before Playing a Clip
	Detecting a State Change

	RealOne Player Methods
	AddToNowPlaying
	ClearNowPlaying
	ComponentVersion
	GetClipInfo
	GetPlayerState
	HandleAction
	InstalledComponents
	OpenURLInPlayerBrowser
	PlayClip
	PlayerProperty
	PreloadURL
	RealPlayerVersion
	SetVideoBackgroundColor

	RealOne Player Events
	RPOnBuffering
	RPOnPositionLengthChange
	RPOnPreload
	RPOnStateChange

	Embedded Environment
	Understanding Presentation Embedding
	Embedded Environment vs. RealOne Environment
	How Embedding Works
	The Embedded Player
	Backwards Compatibility
	SMIL in Embedded Presentations
	Media Preparation

	The Two Embedding Methods
	Javascript and VBScript
	Methods
	Callback Events

	Using the Netscape Plug-in
	Extending Embedded Controls Through Javascript
	Receiving Callbacks Through Javascript
	Handling Events in Netscape Navigator 6 or later
	Handling Events in Netscape Navigator 4.x
	Class Files

	Using the ActiveX Control
	Extending Embedded Controls Through VBScript
	Receiving Callbacks Through VBScript

	Tag Parameters
	AUTOGOTOURL
	AUTOSTART
	BACKGROUNDCOLOR
	CENTER
	CLASSID
	CONSOLE
	Tips for Using Consoles
	Multiple Controls Example

	CONTROLS
	HEIGHT
	ID
	LOOP
	MAINTAINASPECT
	NAME
	NOJAVA
	NUMLOOP
	PARAM
	PREFETCH
	REGION
	SCRIPTCALLBACKS
	SHUFFLE
	SRC
	Using the TYPE Parameter
	Specifying a Source With the Netscape Plugin
	Specifying a Source with ActiveX

	TYPE
	WIDTH

	Embedded Controls
	All
	ControlPanel
	FFCtrl
	HomeCtrl
	ImageWindow
	InfoPanel
	InfoVolumePanel
	MuteCtrl
	MuteVolume
	PauseButton
	PlayButton (also PlayOnlyButton)
	PositionField
	PositionSlider
	RWCtrl
	StatusBar
	StatusField
	StopButton
	TACCtrl
	VolumeSlider

	Embedded Method Overviews
	Controlling Playback
	Obtaining Play State Information
	Specifying Control Attributes
	Seeking Through a Clip
	Accessing Clip Title, Author, and Copyright Information
	Directing a Playlist in a Multi-clip Presentation
	Determining Live Broadcast
	Display User Interface Dialogs
	Error Handling
	Setting the Display Size
	Controlling Audio
	Getting Network Information
	Obtaining RealOne Player Version Information
	Event Handling
	Available Methods
	How Event Handling Works

	Embedded Player Methods
	CanPause
	CanPlay
	CanStop
	DoGotoURL
	DoNextEntry
	DoPause
	DoPlay
	DoPrevEntry
	DoStop
	GetAuthor
	GetAutoGoToURL
	GetAutoStart
	GetBackgroundColor
	GetBandwidthAverage
	GetBandwidthCurrent
	GetBufferingTimeElapsed
	GetBufferingTimeRemaining
	GetCanSeek
	GetCenter
	GetClipHeight
	GetClipWidth
	GetConnectionBandwidth
	GetConsole
	GetConsoleEvents
	GetControls
	GetCopyright
	GetCurrentEntry
	GetDRMInfo
	GetDoubleSize
	GetEntryAbstract
	GetEntryAuthor
	GetEntryCopyright
	GetEntryTitle
	GetFullScreen
	GetImageStatus
	GetLastErrorMoreInfoURL
	GetLastErrorRMACode
	GetLastErrorSeverity
	GetLastErrorUserCode
	GetLastErrorUserString
	GetLastMessage
	GetLastStatus
	GetLength
	GetLiveState
	GetLoop
	GetMaintainAspect
	GetMute
	GetNumEntries
	GetNumLoop
	GetNumSources
	GetOriginalSize
	GetPacketsEarly
	GetPacketsLate
	GetPacketsMissing
	GetPacketsOutOfOrder
	GetPacketsReceived
	GetPacketsTotal
	GetPlayState
	GetPosition
	GetPreFetch
	GetShowAbout
	GetShowPreferences
	GetShowStatistics
	GetShuffle
	GetSource
	GetSourceTransport
	GetStereoState
	GetTitle
	GetVersionInfo
	GetVolume
	GetWantErrors
	GetWantKeyboardEvents
	GetWantMouseEvents
	HasNextEntry
	HasPrevEntry
	SetAuthor
	SetAutoGoToURL
	SetAutoStart
	SetBackgroundColor
	SetCanSeek
	SetCenter
	SetConsole
	SetConsoleEvents
	SetControls
	SetCopyright
	SetDoubleSize
	SetFullScreen
	SetImageStatus
	SetLoop
	SetMaintainAspect
	SetMute
	SetNumLoop
	SetOriginalSize
	SetPosition
	SetPreFetch
	SetShowAbout
	SetShowPreferences
	SetShowStatistics
	SetShuffle
	SetSource
	SetTitle
	SetVolume
	SetWantErrors
	SetWantKeyboardEvents
	SetWantMouseEvents

	Embedded Player Callbacks
	OnAuthorChange
	OnBuffering
	OnClipClosed
	OnClipOpened
	OnContacting
	OnCopyrightChange
	OnErrorMessage
	OnGotoURL
	OnKeyDown
	OnKeyPress
	OnKeyUp
	OnLButtonDown
	OnLButtonUp
	OnMouseMove
	OnMuteChange
	OnPlayStateChange
	OnPosLength
	OnPositionChange
	OnPostSeek
	OnPreFetchComplete
	OnPreSeek
	OnPresentationClosed
	OnPresentationOpened
	OnRButtonDown
	OnRButtonUp
	OnShowStatus
	OnStateChange
	OnTitleChange
	OnVolumeChange

	Glossary
	B
	C
	D
	E
	F
	H
	K
	O
	P
	R
	S
	U
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

