
macromedia
®

ActionScript Reference Guide

FLASH
™

5

2

Trademarks

Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, Authorware,
Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage Designer, Backstage
Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, Design in Motion, Director, Director Multimedia Studio,
Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 3D, Fireworks, Flash, Fontographer,
FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio, Generator Dynamic Graphics Server, Knowledge
Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, Macromedia M Logo & Design, Macromedia Flash,
Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, Object Authoring, Power Applets, Priority Access, Roundtrip
HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, Shockwave, Shockwave Remote, Shockwave Internet Studio, Showcase, Tools
to Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra are trademarks of Macromedia, Inc. and may be
registered in the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words or
phrases mentioned within this publication may be trademarks, servicemarks, or tradenames of Macromedia, Inc. or other entities and
may be registered in certain jurisdictions including internationally.

This guide contains links to third-party Web sites that are not under the control of Macromedia, and Macromedia is not responsible for
the content on any linked site. If you access a third-party Web site mentioned in this guide, then you do so at your own risk. Macromedia
provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia endorses or accepts any
responsibility for the content on those third-party sites.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER
RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyright © 2000 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, translated, or
converted to any electronic or machine-readable form in whole or in part without prior written approval of Macromedia, Inc.
Part Number ZFL50M200

Acknowledgments

Project Management: Erick Vera

Writing: Jody Bleyle, Mary Burger, Louis Dobrozensky, Stephanie Gowin, Marcelle Taylor, and Judy Walthers Von Alten

Editing: Peter Fenczik, Rosana Francescato, Ann Szabla

Multimedia: George Brown, John “Zippy” Lehnus, and Noah Zilberberg

Print and Help Design: Chris Basmajian and Noah Zilberberg

Production: Chris Basmajian and Rebecca Godbois

Special thanks: Jeremy Clark, Brian Dister and the entire Flash Development team, Margaret Dumas, Kipling Inscore,
Alyn Kelley and the entire Flash QA team, Pete Santangeli, Cyn Taylor, and Eric Wittman

First Edition: July 2000

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
INTRODUCTION

Getting Started . 7

What’s new in Flash 5 ActionScript . 7
Using Flash Help for actions . 10

CHAPTER 1

Understanding ActionScript . 11

About scripting in ActionScript . 12
ActionScript terminology . 19
Deconstructing a sample script . 22
Using the Actions panel. 24
Assigning actions to objects . 33
Assigning actions to frames . 35

CHAPTER 2

Writing Scripts with ActionScript 37

Using ActionScript’s syntax . 37
About data types . 42
About variables . 46
Using operators to manipulate values in expressions 51
Using actions. 58
Controlling flow in scripts . 60
Using predefined functions . 63
Creating custom functions . 65
Using predefined objects . 68
Using custom objects. 72
Opening Flash 4 files . 75
Using Flash 5 to create Flash 4 content . 77
3

Contents

4

CHAPTER 3

Creating Interaction with ActionScript 79

Creating a custom cursor .80
Getting the mouse position .82
Capturing keypresses .84
Creating a scrolling text field .86
Setting color values .88
Creating sound controls .90
Detecting collisions .94

CHAPTER 4

Working with Movie Clips. 97

About multiple Timelines .98
Using actions and methods to control Timelines 111
Creating smart clips .119

CHAPTER 5

Integrating Flash with Web Applications 125

Sending and loading variables to and from a remote file126
Creating forms .137
Sending messages to and from the Flash Player141

CHAPTER 6

Troubleshooting ActionScript 145

Authoring and troubleshooting guidelines. .145
Using the Debugger .148
Using the Output window .154

CHAPTER 7

ActionScript Dictionary. 157

Sample entry for most ActionScript elements 158
Sample entry for objects .159
Contents of the dictionary .160

APPENDIX A

Operator Precedence and Associativity. 431

APPENDIX B

Keyboard Keys and Key Code Values 435

Letters A to Z and standard numbers 0 to 9 .435
Keys on the numeric keypad .437
Function keys .438
Other keys .439

APPENDIX C

Error Messages . 441

INDEX . 445
Contents 5

Contents

6

INTRODUCTION

. .. .
Getting Started

ActionScript is Flash’s scripting language. You can use ActionScript to control
objects in Flash movies to create navigation and interactive elements and to extend
Flash to create highly interactive movies and Web applications.

What’s new in Flash 5 ActionScript
Flash 5 ActionScript offers exciting new features for creating immersive,
interactive Web sites with sophisticated games, forms, surveys, and real-time
interactivity such as chat systems.

Flash 5 ActionScript has many new features and syntax conventions that make it
similar to the core JavaScript programming language. This manual will explain
basic programming concepts such as functions, variables, statements, operators,
conditionals, and loops. Chapter 7 of this manual, “ActionScript Dictionary,”
contains a detailed entry for every ActionScript element.

This manual does not attempt to teach programming in general. There are many
resources available that provide more information about general programming
concepts and the JavaScript language.

The European Computers Manufacturers Association (ECMA) wrote a document
called ECMA-262 that was derived from JavaScript to serve as the international
standard for the JavaScript language. ActionScript is based on the ECMA-262
specification, which is available from http://www.ecma.ch.

Netscape DevEdge Online has a JavaScript Developer Central (http://
developer.netscape.com/tech/javascript/index.html) that contains documentation
and articles useful for understanding ActionScript. The most valuable resource is
the Core JavaScript Guide, located at http://developer.netscape.com/docs/
manuals/js/core/jsguide/index.html.
7

Differences between ActionScript and JavaScript

You don’t need to know JavaScript to use and learn ActionScript. If you know
JavaScript, however, ActionScript will appear familiar to you. Some of the
differences between ActionScript and JavaScript are as follows:

• ActionScript does not support browser-specific objects such as Document,
Window, and Anchor.

• ActionScript does not completely support all of the JavaScript
predefined objects.

• ActionScript supports syntax constructs that are not permitted in JavaScript
(for example, the tellTarget and ifFrameLoaded actions and slash syntax).

• ActionScript does not support some JavaScript syntax constructs, such as
switch, continue, try, catch, throw, and statement labels.

• ActionScript does not support the JavaScript Function constructor.

• In ActionScript, the eval action can only perform variable references.

• In JavaScript, toString of undefined is undefined. In Flash 5, for Flash 4
compatibility, toString of undefined is " ".

• In JavaScript, evaluating undefined in a numeric context results in NaN. In
Flash 5, for Flash 4 compatibility, evaluating undefined results in 0.

• ActionScript does not support Unicode; it supports ISO-8859-1 and Shift-JIS
character sets.

Text editing

You can enter scripts directly into the Actions panel in Expert Mode. You can also
choose elements from a pop-up menu or a Toolbox list just like you did in Flash 4.

Dot syntax

You can use dot syntax to get and set the properties and methods of an object,
including movie clip instances and variables. You can use dot syntax instead of the
slash syntax used in Flash 4. Slash syntax is no longer preferred, but it is still
supported by the Flash Player.

Data types

Flash 5 ActionScript supports the following data types: string, number,
boolean, object, and movie clip. Multiple data types allow you to use different
types of information in ActionScript. For example, you can create arrays and
associative arrays.
Introduction8

Local variables

You can declare local variables that expire at the end of the action list or function
call. This allows you to manage memory and reuse variable names. Flash 4
variables were all permanent—even temporary variables like loop counters
remained in the movie until the movie ended.

User-defined functions

You can define functions with parameters that return values. This allows you to
reuse blocks of code in your scripts. In Flash 4, you could reuse code by using the
call action, but you couldn’t pass parameters or return values.

Predefined objects

You can use predefined objects to access and manipulate certain types of
information. The following are a few of the predefined objects:

• The Math object features a full complement of built-in mathematical
constants and functions, such as E (Euler’s constant), cos (Cosine), and
atan (Arctangent).

• The Date object allows you to get information about the date and time on
whatever system is running the Flash Player.

• The Sound object allows you to add sounds to a movie and control sounds
in a movie as it plays. For example, you can adjust volume (setVolume), or
balance (setPan).

• The Mouse object allows you to hide the standard cursor so that you can use a
custom cursor.

• The MovieClip object allows you to control movie clips without using a
wrapper action such as tellTarget. You can call a method such as play,
loadMovie, or duplicateMovieClip from an instance name by using dot
syntax (for example, myMovieClip.play()).

Clip actions

You can use the onClipEvent action to assign actions directly to movie clip
instances on the Stage. The onClipEvent action has events such as load,
enterFrame, mouseMove, and data that allow you to create new kinds of
advanced interactivity.

New actions

You can use new actions such as do..while and for to create complex loops.
Other new actions are implemented as methods of the MovieClip object; for
example, getBounds, attachMovie, hitTest, swapDepths, and globalToLocal.
Getting Started 9

Smart Clips

Smart Clips have internal scripts that you, or another developer, can change
without using the Actions panel. You can pass values to a Smart Clip through clip
parameters that you can define in the Library.

Debugger

The Debugger allows you to view and change variable and property values in a
movie playing in Test-movie mode, the stand-alone Flash Player, or a Web
browser. This allows you to easily find problems in your ActionScript.

XML support

The predefined XML object allows you to convert ActionScript to XML
documents and pass them to server-side applications. You can also use the XML
object to load XML documents into a Flash movie and interpret them. The
predefined XMLSocket object allows you to create a continuous server connection
to pass XML data for real-time applications.

Using Flash Help for actions
Flash 5 contains context-sensitive help for each action available in the Actions
panel. While you’re creating scripts, you can get information on the actions
you’re using.

To get help on actions:

1 In the Actions panel, select an action in the Toolbox list.

2 Click the Help button at the top of the panel.

The topic related to the action appears in the browser.
Introduction10

1

CHAPTER 1

. .. .
Understanding ActionScript

ActionScript, Flash’s scripting language, adds interactivity to a movie. You can set
up your movie so that user events, such as button clicks and keypresses, trigger
scripts that tell the movie what action to perform. For example, you can write a
script that tells Flash to load different movies into the Flash Player depending on
which navigation button a user chooses.

Think of ActionScript as a tool that allows you to create a movie that behaves
exactly as you want. You don’t need to understand every possible use of the tool to
begin scripting; if you have a clear goal, you can start building scripts with simple
actions. You can incorporate new elements of the language as you learn them to
accomplish more complicated tasks.

This chapter introduces you to ActionScript as an object-oriented scripting
language and provides an overview of ActionScript terms. It also deconstructs a
sample script so that you can begin to focus on the bigger picture.

This chapter also introduces you to the Actions panel, where you can build scripts
by selecting ActionScript elements or entering text into the Script window.
11

About scripting in ActionScript
You can start writing simple scripts without knowing much about ActionScript.
All you need is a goal; then it’s just a matter of picking the right actions. The best
way to learn how simple ActionScript can be is to create a script. The following
steps attach a script to a button that changes the visibility of a movie clip.

To change the visibility of a movie clip:

1 Choose Window > Common Libraries > Buttons, and then choose
Window > Common Libraries > Movie Clips. Place a button and a movie
clip on the Stage.

2 Select the movie clip instance on the Stage, and choose Window > Panels >
Instance Properties.

3 In the Name field, enter testMC.

4 Select the button on the Stage, and choose Window > Actions to open the
Actions panel.

5 In the Object Actions panel, click the Actions category to open it.

6 Double-click the setProperty action to add it to the Actions list.

7 From the Property pop-up menu, choose _visible (Visibility).

8 For the Target parameter, enter testMC.

9 For the Value parameter, enter 0.

The code should look like this:

on (release) {
 setProperty ("testMC", _visible, false);
}

10 Choose Control > Test Movie and click the button to see the movie
clip disappear.

ActionScript is an object-oriented scripting language. This means that actions
control objects when a particular event occurs. In this script, the event is the
release of the mouse, the object is the movie clip instance testMC, and the action
is setProperty. When the user clicks the onscreen button, a release event
triggers a script that sets the _visible property of the object MC to false and
causes the object to become invisible.

You can use the Actions panel to guide you through setting up simple scripts. To
use the full power of ActionScript, it is important to understand how the language
works: the concepts, elements, and rules that the language uses to organize
information and create interactive movies.

This section explains the ActionScript workflow, the fundamental concepts of
object-oriented scripting, Flash objects, and script flow. It also describes where
scripts reside in a Flash movie.
Chapter 112

About planning and debugging scripts

When you write scripts for an entire movie, the quantity and variety of scripts can
be large. Deciding which actions to use, how to structure scripts effectively, and
where scripts should be placed requires careful planning and testing, especially as
the complexity of your movie grows.

Before you begin writing scripts, formulate your goal and understand what you
want to achieve. This is as important—and typically as time consuming—as
developing storyboards for your work. Start by writing out what you want to
happen in the movie, as in this example:

• I want to create my whole site using Flash.

• Site visitors will be asked for their name, which will be reused in messages
throughout the site.

• The site will have a draggable navigation bar with buttons that link to each
section of the site.

• When a button is clicked, the new section will fade in to the center of
the Stage.

• One scene will have a contact form with the user’s name already filled in.

When you know what you want, you can build the objects you need and write the
scripts to control those objects.

Getting scripts to work the way you want takes time—often more than one cycle
of writing, testing, and debugging. The best approach is to start simple and test
your work frequently. When you get one part of a script working, choose Save As
to save a version of the file (for example, myMovie01.fla) and start writing the
next part. This approach will help you identify bugs efficiently and ensure that
your ActionScript is solid as you write more complex scripts.
Understanding ActionScript 13

About object-oriented scripting

In object-oriented scripting, you organize information by arranging it into groups
called classes. You can create multiple instances of a class, called objects, to use in
your scripts. You can use ActionScript’s predefined classes and create your own.

When you create a class, you define all the properties (characteristics) and methods
(behaviors) of each object it creates, just as real-world objects are defined. For
example, a person has properties such as gender, height, and hair color and
methods such as talk, walk, and throw. In this example, “person” is a class and
each individual person is an object, or an instance of that class.

Objects in ActionScript can contain data or they can be graphically represented on
the Stage as movie clips. All movie clips are instances of the predefined class
MovieClip. Each movie clip instance contains all the properties (for example,
_height, _rotation, _totalframes) and all the methods (for example,
gotoAndPlay, loadMovie, startDrag) of the MovieClip class.

To define a class, you create a special function called a constructor function;
predefined classes have constructor functions that are already defined. For
example, if you want information about a bicycle rider in your movie, you could
create a constructor function, Biker, with the properties time and distance and
the method rate, which tells you how fast the biker is traveling:

function Biker(t, d) {
this.time = t;
this.distance = d;

}
function Speed() {

return this.time / this.distance;
}
Biker.prototype.rate = Speed;

You could then create copies—that is, instances—of the class. The following code
creates instances of the object Biker called emma and hamish.

emma = new Biker(30, 5);
hamish = new Biker(40, 5);

Instances can also communicate with each other. For the Biker object, you could
create a method called shove that lets one biker shove another biker. (The
instance emma could call its shove method if hamish got too close.) To pass
information to a method, you use parameters (arguments): for example, the
shove method could take the parameters who and howFar. In this example emma
shoves hamish 10 pixels:

emma.shove(hamish, 10);

In object-oriented scripting, classes can receive properties and methods from
each other according to a specific order; this is called inheritance. You can use
inheritance to extend or redefine the properties and methods of a class. A class
that inherits from another class is called a subclass. A class that passes properties
and methods to another class is called a superclass. A class can be both a subclass
and a superclass.
Chapter 114

About the MovieClip object

ActionScript’s predefined classes are called objects. Each object allows you to access
a certain type of information. For example, the Date object has methods (for
example, getFullYear, getMonth), that allow you to read information from the
system clock. The Sound object has methods (for example, setVolume, setPan)
that allow you to control a sound in a movie. The MovieClip object has methods
that allow you to control movie clip instances (for example, play, stop, and
getURL) and get and set information about their properties (for example, _alpha,
_framesloaded, _visible).

Movie clips are the most important objects of a Flash movie because they have
Timelines that run independently of each other. For example, if the main
Timeline only has one frame and a movie clip in that frame has ten frames, each
frame in the movie clip will still play. This allows instances to act as autonomous
objects that can communicate with each other.

Movie clip instances each have a unique instance name so that you can target
them with an action. For example, you may have multiple instances on the Stage
(for example, leftClip and rightClip) and only want one to play at a time. To
assign an action that tells one particular instance to play, you need to use its name.
In the following example, the movie clip’s name is leftClip:

leftClip.play();

Instance names also allow you to duplicate, remove, and drag movie clips while a
movie plays. The following example duplicates the instance cartItem to fill out a
shopping cart with the number of items purchased:

onClipEvent(load) {
do {

duplicateMovieClip("cartItem", "cartItem" + i, i);
i = i + 1;

} while (i <= numberItemsPur);
}

Movie clips have properties whose values you can set and retrieve dynamically
with ActionScript. Changing and reading these properties can change the
appearance and identity of a movie clip and is the key to creating interactivity. For
example, the following script uses the setProperty action to set the transparency
(alpha setting) of the navigationBar instance to 10:

setProperty("navigationBar", _alpha, 10);

For more information about other types of objects, see “Using predefined objects”
on page 68.

How scripts flow

ActionScript follows a logical flow. Flash executes ActionScript statements starting
with the first statement and continuing in order until it reaches the final statement
or a statement that instructs ActionScript to go somewhere else.
Understanding ActionScript 15

Some actions that send ActionScript somewhere other than the next statement are
if statements, do...while loops, and the return action.

A flow chart of the if..else action

A flow chart of the do..while action

Statement(s)

Else (conditional
statement(s))

False

True

Statement(s)

End if

If (conditional
statement(s))

False

True

Statement(s)

Statement

End
Do WhileLoop

Do WhileLoop
(conditional
statement)

False

True
Chapter 116

An if statement is called a conditional statement or a “logical branch” because it
controls the flow of a script based on the evaluation of a certain condition. For
example, the following code checks to see if the value of the number variable is less
than or equal to 10. If the check returns true (for example, the value of number is
5), the variable alert is set and displays its value in an input text field, as in the
following:

if (number <= 10) {
 alert = "The number is less than or equal to 10";
}

You can also add else statements to create a more complicated conditional
statement. In the following example, if the condition returns true (for
example, the value of number is 3), the statement between the first set of curly
braces runs and the alert variable is set in the second line. If the condition
returns false (for example, the value of number is 30), the first block of code is
skipped and the statement between the curly braces after the else statement runs,
as in the following:

if (number <= 10) {
 alert = "The number is less than or equal to 10";
} else {
 alert = "The number is greater than 10";
}

For more information, see “Using "if" statements” on page 60.

Loops repeat an action a certain number of times or until a certain condition is
met. In the following example, a movie clip is duplicated five times:

i = 0;
do {
 duplicateMovieClip ("myMovieClip", "newMovieClip" + i, i);
 newName = eval("newMovieClip" + i);
 setProperty(newName, _x, getProperty("myMovieClip", _x) + (i *
5));
 i = i + 1;
} while (i <= 5);

For detailed information, see “Repeating an action” on page 61.
Understanding ActionScript 17

Controlling when ActionScript runs

When you write a script, you use the Actions panel. The Actions panel allows you
to attach the script to a frame on the main Timeline or the Timeline of any movie
clip, or to either a button or movie clip on the Stage.

Flash executes actions at different times, depending on what they’re attached to:

• Actions attached to a frame are executed when the playhead enters that frame.

• Actions attached to a button are enclosed in an on handler action.

• Actions attached to a movie clip are enclosed in an onClipEvent
handler action.

The onClipEvent and on actions are called handlers because they “handle” or
manage an event. (An event is an occurrence such as a mouse movement, a
keypress, or a movie clip being loaded.) Movie clip and button actions execute
when the event specified by the handler occurs. You can attach more than one
handler to an object if you want actions to execute when different events happen.
For more information, see Chapter 3, “Creating Interactivity with ActionScript”.

Several onClipEvent handlers attached to a movie clip on the Stage
Chapter 118

ActionScript terminology
Like any scripting language, ActionScript uses specific terminology according
to specific rules of syntax. The following list provides an introduction to
important ActionScript terms in alphabetical order. These terms and the syntax
that governs them are discussed in more detail in Chapter 2, “Writing Scripts
with ActionScript.”

Actions are statements that instruct a movie to do something while it is playing.
For example, gotoAndStop sends the playhead to a specific frame or label. In this
book, the terms action and statement are interchangeable.

Arguments, also called parameters, are placeholders that let you pass values to
functions. For example, the following function, called welcome, uses two values it
receives in the arguments firstName and hobby:

function welcome(firstName, hobby) {
welcomeText = "Hello, " + firstName + "I see you enjoy " +

hobby;
}

Classes are data types that you can create to define a new type of object. To define
a class of object, you create a constructor function.

Constants are elements that don’t change. For example, the constant TAB always
has the same meaning. Constants are useful for comparing values.

Constructors are functions that you use to define the properties and methods of a
class. For example, the following code creates a new Circle class by creating a
constructor function called Circle:

function Circle(x, y, radius){
this.x = x;
this.y = y;
this.radius = radius;

}

Data types are a set of values and the operations that can be performed on them.
String, number, true and false (Boolean) values, object, and movie clip are the
ActionScript data types. For more details on these language elements, see “About
data types” on page 42.

Events are actions that occur while a movie is playing. For example, different
events are generated when a movie clip loads, the playhead enters a frame, the user
clicks a button or movie clip, or the user types at the keyboard.

Expressions are any parts of a statement that produce a value. For example, 2 + 2
is an expression.
Understanding ActionScript 19

Functions are blocks of reusable code that can be passed arguments (parameters)
and can return a value. For example, the getProperty function is passed the
name of a property and the instance name of a movie clip, and it returns the value
of the property. The getVersion function returns the version of the Flash Player
currently playing the movie.

Handlers are special actions that “handle” or manage an event such as
mouseDown or load. For example, on (onMouseEvent) and onClipEvent
are ActionScript handlers.

Identifiers are names used to indicate a variable, property, object, function, or
method. The first character must be a letter, underscore(_), or dollar sign($). Each
subsequent character must be a letter, number, underscore(_), or dollar sign($).
For example, firstName is the name of a variable.

Instances are objects that belong to a certain class. Each instance of a class
contains all the properties and methods of that class. All movie clips are instances
with properties (for example, _alpha, and _visible) and methods (for example,
gotoAndPlay, and getURL) of the MovieClip class.

Instance names are unique names that allow you to target movie clip instances in
scripts. For example, a master symbol in the Library could be called counter and
the two instances of that symbol in the movie could have the instance names
scorePlayer1 and scorePlayer2. The following code sets a variable called
score inside each movie clip instance by using instance names:

_root.scorePlayer1.score += 1
_root.scorePlayer2.score -= 1

Keywords are reserved words that have special meaning. For example, var is a
keyword used to declare local variables.

Methods are functions assigned to an object. After a function is assigned, it can be
called as a method of that object. For example, in the following code, clear
becomes a method of the controller object:

function Reset(){
x_pos = 0;
x_pos = 0;

}
controller.clear = Reset;
controller.clear();

Objects are collections of properties; each object has its own name and value.
Objects allow you to access a certain type of information. For example, the
predefined Date object provides information from the system clock.

Operators are terms that calculate a new value from one or more values. For
example, the addition (+) operator adds two or more values together to produce
a new value.
Chapter 120

Target paths are hierarchical addresses of movie clip instance names, variables,
and objects in a movie. You can name a movie clip instance in the Instance panel.
The main Timeline always has the name _root. You can use a target path to direct
an action at a movie clip or to get or set the value of a variable. For example, the
following statement is the target path to the variable volume inside the movie clip
stereoControl:

_root.stereoControl.volume

Properties are attributes that define an object. For example, _visible is a
property of all movie clips that defines whether the movie clip is visible or hidden.

Variables are identifiers that hold values of any data type. Variables can be created,
changed, and updated. The values they store can be retrieved for use in scripts.
In the following example, the identifiers on the left side of the equal signs
are variables:

x = 5;
name = "Lolo";
customer.address = "66 7th Street";
c = new Color(mcinstanceName);
Understanding ActionScript 21

Deconstructing a sample script
In this sample movie, when a user drags the bug to the bug zapper, the bug turns
black and falls and the bug zapper flashes. The movie is one frame long and
contains two objects, the bug movie clip instance and the zapper movie clip
instance. Each movie clip also contains one frame.

The bug and zapper movie clip instances on the Stage in frame 1

There is only one script in the movie; it’s attached to the bug instance, as in the
Object Actions panel below:

The Object Actions panel with the script attached to the bug instance

Handler
Action

Variable

If conditional
statement

Else statement

New operator

Event

Constructor function
Chapter 122

Both objects have to be movie clips so you can give them instance names in the
Instance panel and manipulate them with ActionScript. The bug’s instance name
is bug and the zapper’s instance name is zapper. In the script the bug is referred to
as this because the script is attached to the bug and the reserved word this refers
to the object that calls it.

There are two onClipEvent handlers with two different events: load and
enterFrame. The actions in the onClipEvent(load) statement only execute
once, when the movie loads. The actions in the onClipEvent(enterFrame)
statement execute every time the playhead enters a frame. Even in a one-frame
movie, the playhead still enters that frame repeatedly and the script executes
repeatedly. The following actions occur within each onClipEvent handler:

onClipEvent(load) A startDrag action makes the bug movie clip draggable. An
instance of the Color object is created with the new operator and the Color
constructor function, Color, and assigned to the variable zap:

onClipEvent (load) {
startDrag (this, true);
zap = new Color(this);

}

onClipEvent(enterFrame) A conditional if statement evaluates a hitTest
action to check whether the bug instance (this) is touching the bug zapper
instance (_root.zapper). There are two possible outcomes of the evaluation,
true or false:

onClipEvent (enterFrame) {
if (this.hitTest(_root.zapper)) {

zap.setRGB(0);
setProperty (_target, _y, _y+50);
setProperty (_root.zapper, _alpha, 50);
stopDrag ();

} else {
setProperty (_root.zapper, _alpha, 100);

}
}

If the hitTest action returns true, the zap object created by the load event is
used to set the bug’s color to black. The bug’s y property (_y) is set to itself plus 50
so that the bug falls. The zapper’s transparency (_alpha) is set to 50 so that it
dims. The stopDrag action stops the bug from being draggable.

If the hitTest action returns false, the action following the else statement runs
and the bug zapper’s _alpha value is set to 100. This makes the bug zapper appear
to flash as its _alpha value goes from an initial state (100) to a zapped state (50)
and back to an initial state. The hitTest action returns false and the else
statements execute after the bug has been zapped and fallen.

To see the movie play, see Flash Help.
Understanding ActionScript 23

Using the Actions panel
The Actions panel lets you create and edit actions for an object or frame using two
different editing modes. You can select prewritten actions from the Toolbox list,
drag and drop actions, and use buttons to delete or rearrange actions. In Normal
Mode you can write actions using parameter (argument) fields that prompt you
for the correct arguments. In Expert Mode you can write and edit actions directly
in a text box, much like writing script with a text editor.

To display the Actions panel:

Choose Window > Actions.

Selecting an instance of a button or movie clip makes the Actions panel active.
The Actions panel title changes to Object Actions if a button or movie clip is
selected, and to the Frame Actions panel if a frame is selected.

To select an editing mode:

1 With the Actions panel displayed, click the arrow in the upper right corner of
the panel to display the pop-up menu.

2 Choose Normal Mode or Expert Mode from the pop-up menu.

Each script maintains its own mode. For example, you can script one instance
of a button in Normal Mode, and another in Expert Mode. Switching between
the selected button then switches the panel’s mode state.
Chapter 124

Normal Mode

In Normal Mode you create actions by selecting actions from a list on the left
side of the panel, called the Toolbox list. The Toolbox list contains Basic Actions,
Actions, Operators, Functions, Properties, and Objects categories. The Basic
Actions category contains the simplest Flash actions and is only available in
Normal Mode. The selected actions are listed on the right side of the panel, in
the Actions list. You can add, delete, or change the order of action statements;
you can also enter parameters (arguments) for actions in parameter fields at the
bottom of the panel.

In Normal Mode you can use the controls in the Actions panel to delete or change
the order of statements in the Actions list. These controls are especially useful for
managing frame or button actions that have several statements.

The Actions panel in Normal Mode.

Insert Target Path button

Actions listToolbox list

Parameters panel

Add a statement
Delete a statement
Understanding ActionScript 25

To select an action:

1 Click an Actions category in the toolbox to display the actions in that category.

2 Double-click an action or drag it to the Script window.

To use the Parameters fields:

1 Click the Parameters button in the lower right corner of the Actions panel to
display the fields.

2 Select the action and enter new values in the Parameters fields to change
parameters of existing actions.

To insert a movie clip target path:

1 Click the Target Path button in the lower right corner of the Actions panel to
display the Insert Target Path dialog box.

2 Select a movie clip from the display list.

To move a statement up or down the list:

1 Select a statement in the Actions list.

2 Click the Up or Down Arrow buttons.

To delete an action:

1 Select a statement in the Actions list.

2 Click the Delete (-) button.

To change the parameters of existing actions:

1 Select a statement in the Actions list.

2 Enter new values in the Parameters fields.

To resize the Toolbox or Actions list, do one of the following:

• Drag the vertical splitter bar that appears between the Toolbox and Actions list.

• Double-click the splitter bar to collapse the Toolbox list; double-click the bar
again to redisplay the list.

• Click the Left or Right Arrow button on the splitter bar to expand or
collapse the list.

When the Toolbox list is hidden, you can still access its items using the Add (+)
button in the upper left of the Actions panel.
Chapter 126

Expert Mode

In Expert Mode you create actions by entering ActionScript into the text box on
the right side of the panel or by selecting actions from the Toolbox list on the left.
You edit actions, enter parameters for actions, or delete actions directly in the text
box, much like creating script in a text editor.

Expert Mode lets advanced ActionScript users edit their scripts with a text editor,
as they would JavaScript or VBScript. Expert Mode differs from Normal Mode
in these ways:

• Selecting an item using the Add (+) button or Toolbox list inserts the item in
the text-editing area.

• No parameter fields appear.

• In the button panel, only the Add (+) button works.

• The Up and Down Arrow buttons remain inactive.

The Actions panel in Expert Mode
Understanding ActionScript 27

Switching between editing modes

Changing editing modes while writing a script can change the formatting of the
script. For that reason, it is best to use one editing mode per script.

When you switch from Normal to Expert Mode, indentation and formatting is
maintained. Although you can convert Normal Mode scripts with errors to Expert
Mode, you cannot export the scripts until the errors are fixed.

Switching from Expert to Normal Mode is slightly more complex:

• When you switch to Normal Mode, Flash reformats the script and strips any
white space and indentation you’ve added.

• If you switch to Normal Mode and then back to Expert Mode, Flash reformats
the script according to its appearance in Normal Mode.

• Expert Mode scripts containing errors cannot be exported or converted to
Normal Mode; if you try to convert the script, you’ll receive an error message.

To switch editing modes:

Choose Normal Mode or Expert Mode from the pop-up menu at the upper right
of the Actions panel. A check mark indicates the selected mode.

To set an editing mode preference:

1 Choose Edit > Preferences.

2 Select the General tab

3 In the Actions Panel section, select Normal Mode or Expert Mode from the
pop-up menu.
Chapter 128

Using an external editor

Although the Actions panel’s Expert Mode gives you more control when editing
ActionScript, you can also choose to edit a script outside Flash. You can then use
the include action to add the scripts you wrote in the external editor to a script
within Flash.

For example, the following statement imports a script file:

#include "externalfile.as"

The text of the script file replaces the include action. The text file must be
present when the movie is exported.

To add the scripts written in an external editor to a script within Flash:

1 Drag include from the Toolbox list to the Script window.

2 Enter the path to the external file in the Path box.

The path should be relative to the FLA file. For example, if myMovie.fla and
externalfile.as were in the same folder, the path would be externalfile.as. If
externalfile.as was in a subfolder called Scripts, the path would be scripts/
externalfile.as.

Choosing Actions panel options

The Actions panel allows you to work with scripts in a variety of ways. You can
change the font size in the Script window. You can import a text file containing
ActionScript into the Actions panel and export actions as a text file, search and
replace text in a script, and use syntax highlighting to make scripts easier to read
and errors easier to detect. The Actions panel displays warning highlights for
syntax errors and Flash Player version incompatibilities. It also highlights
deprecated, or no longer preferable, ActionScript elements.

These Actions panel options are available in both Normal and Expert Modes
unless otherwise noted.

To change the font size in the Script window:

1 From the pop-up menu at the upper right of the Actions panel, choose
Font Size.

2 Select Small, Normal, or Large.
Understanding ActionScript 29

To import a text file containing ActionScript:

1 From the pop-up menu at the upper right of the Actions panel, choose
Import from File.

2 Select a text file containing ActionScript, and click Open.

Note: Scripts with syntax errors can only be imported in Expert Mode. In Normal Mode,
you’ll receive an error message.

To export actions as a text file:

1 From the pop-up menu at the upper right of the Actions panel, Choose
Export as File.

2 Choose a location where the file will be saved, and click Save.

To print actions:

1 From the pop-up menu at the upper right of the Actions panel, choose Print.

The Print dialog box appears.

2 Choose Options and click Print.

Note: The printed file will not include information about its originating Flash file. It’s a good
idea to include this information in a comment action in the script.

To search for text in a script, choose an option from the Actions panel
pop-up menu:

• Choose Goto Line to go to a specific line in a script.

• Choose Find to find text.

• Choose Find Again to find text again.

• Choose Replace to find and replace text.

In Expert Mode, Replace scans the entire body of text in a script. In Normal
Mode, Replace searches and replaces text only in the parameter field of each
action. For example, you cannot replace all gotoAndPlay actions with
gotoAndStop in Normal Mode.

Note: Use the Find or Replace command to search the current Actions list. To search
through text in every script in a movie, use the Movie Explorer. For more information,
see Using Flash.
Chapter 130

Highlighting and checking syntax

Syntax highlighting identifies certain ActionScript elements with specific colors.
This helps prevent syntax errors such as incorrect capitalization of keywords. For
example, if the keyword typeof was spelled typeOf, it would not be blue and you
could recognize the error. When syntax highlighting is turned on, text is
highlighted in the following way:

• Keywords and predefined identifiers (for example, gotoAndStop, play, and
stop) are blue.

• Properties are green.

• Comments are magenta.

• Strings surrounded by quotation marks are gray.

To turn syntax highlighting on or off:

Choose Colored Syntax from the pop-up menu at the upper right of the Actions
panel. A check mark indicates that the option is turned on. All scripts in your
movie will be highlighted.

It’s a good idea to check a script’s syntax for errors before exporting a movie.
Errors are reported in the Output window. You can export a movie that contains
erroneous scripts. However, you will be warned that scripts containing errors were
not exported.

To check the current script’s syntax for errors:

Choose Check Syntax from the pop-up menu at the upper right of the
Actions panel.
Understanding ActionScript 31

About error highlighting

All syntax errors are highlighted with a solid red background in the Script window
in Normal Mode. This makes it easy to spot problems. If you move the mouse
pointer over an action with incorrect syntax, a tooltip displays the error message
associated with that action. When you select the action, the error message is also
displayed in the pane title of the parameters area.

In Normal Mode all ActionScript export incompatibilities are highlighted with a
solid yellow background in the Script window. For example, if the Flash Player
export version is set to Flash 4, ActionScript that is supported only by the Flash 5
Player is highlighted in yellow. The export version is determined in the Publish
Settings dialog box.

All deprecated actions are highlighted with a green background in the toolbox.
Deprecated actions are only highlighted when the Flash export version is set
to Flash 5.

To set the Flash Player export version:

1 Choose File > Publish Settings.

2 Click the Flash tab.

3 Choose an export version from the Version pop-up menu.

Note: You cannot turn off syntax error highlighting.

To show deprecated syntax highlighting:

Choose Show Deprecated Syntax from the Actions panel pop-up menu.

For a complete list of all error messages, see Appendix C, “Error Messages.”
Chapter 132

Assigning actions to objects
You can assign an action to a button or a movie clip to make an action execute
when the user clicks a button or rolls the pointer over it, or when the movie clip
loads or reaches a certain frame. You assign the action to an instance of the button
or movie clip; other instances of the symbol aren’t affected. (To assign an action to
a frame, see “Assigning actions to frames” on page 35.)

When you assign an action to a button, you must nest the action inside an
on(mouse event) handler and specify the mouse or keyboard events that trigger
the action. When you assign an action to a button in Normal Mode, the
on(mouse event) handler is automatically inserted.

When you assign an action to a movie clip, you must nest the action inside an
onClipEvent handler and specify the clip event that triggers the action. When
you assign an action to a movie clip in Normal Mode, the on(mouse event)
handler is automatically inserted.

The following instructions describe how to assign actions to objects using the
Actions panel in Normal Mode.

Once you’ve assigned an action, use the Control > Test Movie command to test
whether it works. Most actions won’t work in Editing Mode.
Understanding ActionScript 33

To assign an action to a button or movie clip:

1 Select a button or movie clip instance and choose Window > Actions.

If the selection is not a button, a movie clip instance, or a frame, or if the
selection includes multiple objects, the Actions panel is dimmed.

2 Choose Normal Mode from the pop-up menu at the upper right of the Object
Actions panel.

3 To assign an action, do one of the following:

• Click the Actions folder in the Toolbox list on the left side of the Actions
panel. Double-click an action to add it to the Actions list on the right side
of the panel.

• Drag an action from the Toolbox list to the Actions list.

• Click the Add (+) button and choose an action from the pop-up menu.

• Use the keyboard shortcut listed next to each action in the pop-up menu.

Selecting an object from the toolbox in Normal Mode

4 In the Parameters fields at the bottom of the panel, select parameters for the
action as needed.

Parameters vary depending on the action you choose. For detailed information
on the required parameters for each action, see Chapter 7, “ActionScript
Dictionary.” To insert a Target path for a movie clip into a Parameter field, click
the Target Path button in the lower right corner of the Actions panel. For more
information, see Chapter 4, “Working with Movie Clips.”

5 Repeat steps 3 and 4 to assign additional actions as necessary.

To test an object action:

Choose Control > Test Movie.
Chapter 134

Assigning actions to frames
To make a movie do something when it reaches a keyframe, you assign a frame
action to the keyframe. For example, to create a loop in the Timeline between
frames 20 and 10, you would add the following frame action to frame 20:

gotoAndPlay (10);

It’s a good idea to place frame actions in a separate layer. Frames with actions
display a small a in the Timeline.

An “a” in a keyframe indicates a frame action.

Once you’ve assigned an action, choose Control > Test Movie to test whether it
works. Most actions won’t work in Editing Mode.

The following instructions describe how to assign frame actions using the Actions
panel in Normal Mode. (For information on assigning an action to a button or
movie clip, see “Assigning an action or method” on page 114.)
Understanding ActionScript 35

To assign an action to a keyframe:

1 Select a keyframe in the Timeline and choose Window > Actions.

If a selected frame is not a keyframe, the action is assigned to the previous
keyframe. If the selection is not a frame, or if the selection includes multiple
keyframes, the Actions panel is dimmed.

2 Choose Normal Mode from the pop-up menu at the upper right of the Frame
Actions panel.

3 To assign an action, do one of the following:

• Click the Actions folder in the Toolbox list on the left side of the Actions
panel. Double-click an action to add it to the Actions list on the right side
of the panel.

• Drag an action from the Toolbox list to the Actions list.

• Click the Add (+) button and choose an action from the pop-up menu.

• Use the keyboard shortcut listed next to each action in the pop-up menu.

• In the Parameters fields at the bottom of the panel, select parameters for the
action as needed.

4 To assign additional actions, select another keyframe and repeat step 3.

To test a frame action:

Choose Control > Test Movie.
Chapter 136

2

CHAPTER 2

. .. .
Writing Scripts with ActionScript

When you create scripts in ActionScript, you can choose the level of detail you
want to use. To use simple actions, you can use the Actions panel in Normal Mode
and build scripts by choosing options from menus and lists. However, if you want
to use ActionScript to write more powerful scripts, you must understand how
ActionScript works as a language.

Like other scripting languages, ActionScript consists of components, such
as predefined objects and functions, and it allows you to create your own
objects and functions. ActionScript follows its own rules of syntax, reserves
keywords, provides operators, and allows you to use variables to store and
retrieve information.

ActionScript’s syntax and style closely resemble that of JavaScript. Flash 5
performs conversions on ActionScript written in any previous version of Flash.

Using ActionScript’s syntax
ActionScript has rules of grammar and punctuation that determine which
characters and words are used to create meaning and in which order they can be
written. For example, in English, a period ends a sentence. In ActionScript, a
semicolon ends a statement.

The following are general rules that apply to all ActionScript. Most ActionScript
terms also have their own individual requirements; for the rules for a specific term,
see the its entry in Chapter 7, “ActionScript Dictionary.”
37

Dot syntax

In ActionScript, a dot (.) is used to indicate the properties or methods related
to an object or movie clip. It is also used to identify the target path to a movie clip
or variable. A dot syntax expression begins with the name of the object or movie
clip followed by a dot, and ends with the property, method, or variable you
want to specify.

For example, the _x movie clip property indicates a movie clip’s x axis position on
the Stage. The expression ballMC._x refers to the _x property of the movie clip
instance ballMC.

As another example, submit is a variable set in the movie clip form
which is nested inside the movie clip shoppingCart. The expression
shoppingCart.form.submit = true sets the submit variable of the
instance form to true.

Expressing a method of an object or movie clip follows the same pattern. For
example, the play method of the ballMC instance moves the playhead in the
Timeline of ballMC, as in the following statement:

ballMC.play();

Dot syntax also uses two special aliases, _root and _parent. The alias _root
refers to the main Timeline. You can use the _root alias to create an absolute
target path. For example, the following statement calls the function
buildGameBoard in the movie clip functions on the main Timeline:

_root.functions.buildGameBoard();

You can use the alias _parent to refer to a movie clip in which the current movie
clip is nested. You can use _parent to create a relative target path. For example, if
the movie clip dog is nested inside the movie clip animal, the following
statement on the instance dog tells animal to stop:

_parent.stop();

See Chapter 4, “Working with Movie Clips.”
Chapter 238

Slash syntax

Slash syntax was used in Flash 3 and 4 to indicate the target path of a movie clip
or variable. This syntax is still supported by the Flash 5 Player, but its use is not
recommended. In slash syntax, slashes are used instead of dots to indicate the path
to a movie clip or variable. To indicate a variable, you precede the variable with a
colon as in the following:

myMovieClip/childMovieClip:myVariable

You can write the same target path in dot syntax, as in the following:

myMovieClip.childMovieClip.myVariable

Slash syntax was most commonly used with the tellTarget action, whose use is
also no longer recommended.

Note: The with action is now preferred over tellTarget because it is more compatible
with dot syntax. For more information, see their individual entries in Chapter 7,
“ActionScript Dictionary.”

Curly braces

ActionScript statements are grouped together into blocks with curly braces ({ }),
as in the following script:

on(release) {
myDate = new Date();
currentMonth = myDate.getMonth();

}

See “Using actions” on page 58.

Semicolons

An ActionScript statement is terminated with a semicolon, but if you omit the
terminating semicolon, Flash will still compile your script successfully. For
example, the following statements are terminated with semicolons:

column = passedDate.getDay();
row = 0;

The same statements could be written without the terminating semicolons:

column = passedDate.getDay()
row = 0
Writing Scripts with ActionScript 39

Parentheses

When you define a function, place any arguments inside parentheses:

function myFunction (name, age, reader){
...

}

When you call a function, include any arguments passed to the function in
parentheses, as shown here:

myFunction ("Steve", 10, true);

You can also use parentheses to override ActionScript’s order of precedence or
to make your ActionScript statements easier to read. See “Operator precedence”
on page 52.

You also use parentheses to evaluate an expression on the left side of a dot in dot
syntax. For example, in the following statement, the parentheses cause new
color(this) to evaluate and create a new color object:

onClipEvent(enterFrame) {
(new Color(this)).setRGB(0xffffff));

}

If you didn’t use parentheses, you would need to add a statement to the code
to evaluate it:

onClipEvent(enterFrame) {
myColor = new Color(this);
myColor.setRGB(0xffffff);

}

Uppercase and lowercase letters

Only keywords in ActionScript are case sensitive; with the rest of ActionScript,
you can use uppercase and lowercase letters however you want. For example, the
following statements are equivalent:

cat.hilite = true;
CAT.hilite = true;

However, it’s a good habit to follow consistent capitalization conventions, such as
those used in this book, to make it is easier to identify names of functions and
variables when reading ActionScript code.

If you don’t use correct capitalization with keywords, your script will have errors.
When Colored Syntax is turned on in the Actions panel, keywords written with
the correct capitalization are blue. For more information, see “Keywords” on page
41 and “Highlighting and checking syntax” on page 31.
Chapter 240

Comments

In the Actions panel, use the comment statement to add notes to a frame or button
action when you want to keep track of what you intended an action to do.
Comments are also useful for passing information to other developers if you work
in a collaborative environment or are providing samples.

When you choose the comment action, the characters // are inserted into
the script. Even a simple script is easier to understand if you make notes as
you create it:

on(release) {
// create new Date object
myDate = new Date();
currentMonth = myDate.getMonth();
// convert month number to month name
monthName = calcMonth(currentMonth);
year = myDate.getFullYear();
currentDate = myDate.getDat ();

}

Comments appear in pink in the Script window. They can be any length without
affecting the size of the exported file, and they do not need to follow rules for
ActionScript syntax or keywords.

Keywords

ActionScript reserves words for specific use within the language, so you can’t use
them as variable, function, or label names. The following table lists all
ActionScript keywords:

For more information about a specific keyword, see its entry in Chapter 7,
“ActionScript Dictionary.”

break for new var

continue function return void

delete if this while

else in typeof with
Writing Scripts with ActionScript 41

Constants

A constant is a property whose value never changes. Constants are listed in
the Actions toolbox and in Chapter 7, “ActionScript Dictionary,” in all
uppercase letters.

For example, the constants BACKSPACE, ENTER, QUOTE, RETURN, SPACE, and TAB
are properties of the Key object and refer to keyboard keys. To test whether the
user is pressing the Enter key, use the following statement:

if(keycode() == Key.ENTER) {
alert = "Are you ready to play?"
controlMC.gotoAndStop(5);

}

About data types
A data type describes the kind of information a variable or ActionScript element
can hold. There are two kinds of data types: primitive and reference. The primitive
data types—string, number, and Boolean—have a constant value and, therefore,
can hold the actual value of the element they represent. The reference data types—
movie clip and object—have values that can change and, therefore, contain
references to the actual value of the element. Variables containing primitive data
types behave differently in certain situations than those containing reference
types. See “Using variables in a script” on page 49.

Each data type has its own rules and is listed here. References are included for data
types that are discussed in more detail.
Chapter 242

String

A string is a sequence of characters such as letters, numbers, and punctuation
marks. You enter strings in an ActionScript statement by enclosing them in single
or double quotation marks. Strings are treated as characters instead of as variables.
For example, in the following statement, "L7" is a string:

favoriteBand = "L7";

You can use the addition (+) operator to concatenate, or join, two strings.
ActionScript treats spaces at the beginning or end of a string as a literal part of
the string. The following expression includes a space after the comma:

greeting = "Welcome," + firstName;

Although ActionScript does not distinguish between uppercase and lowercase in
references to variables, instance names, and frame labels, literal strings are case
sensitive. For example, the following two statements place different text into the
specified text field variables, because "Hello" and "HELLO" are literal strings.

invoice.display = "Hello";
invoice.display = "HELLO";

To include a quotation mark in a string, precede it with a backslash character (\).
This is called “escaping” a character. There are other characters that cannot be
represented in ActionScript except by special escape sequences. The following
table provides all the ActionScript escape characters:

Escape sequence Character

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Line-feed character (ASCII 10)

\r Carriage return character (ASCII 13)

\t Tab character (ASCII 9)

\" Double quotation mark

\' Single quotation mark

\\ Backslash

\000 - \377 A byte specified in octal

\x00 - \xFF A byte specified in hexadecimal

\u0000 - \uFFFF A 16-bit Unicode character specified in hexadecimal
Writing Scripts with ActionScript 43

Number

The number data type is a double-precision floating-point number. You can
manipulate numbers using the arithmetic operators addition (+), subtraction (-),
multiplication (*), division (/), modulo (%), increment (++), and decrement (--).
You can also use methods of the predefined Math object to manipulate numbers.
The following example uses the sqrt (square root) method to return the square
root of the number 100:

Math.sqrt(100);

See “Numeric operators” on page 53.

Boolean

A Boolean value is one that is either true or false. ActionScript also converts the
values true and false to 1 and 0 when appropriate. Boolean values are most
often used with logical operators in ActionScript statements that make
comparisons to control the flow of a script. For example, in the following script,
the movie plays if the variable password is true:

onClipEvent(enterFrame) {
if ((userName == true) && (password == true)){

play();
}

}

See “Using "if" statements” on page 60 and “Logical operators” on page 54.
Chapter 244

Object

An object is a collection of properties. Each property has a name and a value.
The value of a property can be any Flash data type, even the object data type.
This allows you to arrange objects inside each other, or “nest” them. To specify
objects and their properties, you use the dot (.) operator. For example, in the
following code, hoursWorked is a property of weeklyStats, which is a property
of employee:

employee.weeklyStats.hoursWorked

You can use ActionScript’s predefined objects to access and manipulate specific
kinds of information. For example, the Math object has methods that perform
mathematical operations on numbers you pass to them. This example uses the
sqrt method:

squareRoot = Math.sqrt(100);

The ActionScript MovieClip object has methods that let you control
movie clip symbol instances on the Stage. This example uses the play and
nextFrame methods:

mcInstanceName.play();
mc2InstanceName.nextFrame();

You can also create your own objects so that you can organize information in your
movie. To add interactivity to a movie with ActionScript, you’ll need many
different pieces of information: for example, you might need a user’s name, the
speed of a ball, the names of items in a shopping cart, the number of frames
loaded, the user’s zip code, and which key was pressed last. Creating custom
objects allows you to organize this information into groups, simplify your
scripting, and reuse your scripts. For more information, see “Using custom
objects” on page 72.

Movie clip

Movie clips are symbols that can play animation in a Flash movie. They are the
only data type that refers to a graphical element. The movie clip data type allows
you to control movie clip symbols using the methods of the MovieClip object.
You call the methods using the dot (.) operator, as shown here:

myClip.startDrag(true);
parentClip.childClip.getURL("http://www.macromedia.com/support/"
+ product);
Writing Scripts with ActionScript 45

About variables
A variable is a container that holds information. The container itself is always the
same, but the contents can change. By changing the value of a variable as the
movie plays, you can record and save information about what the user has done,
record values that change as the movie plays, or evaluate whether some condition
is true or false.

It’s a good idea always to assign a variable a known value the first time you define
the variable. This is known as initializing a variable and is often done in the first
frame of the movie. Initializing variables makes it easier to track and compare the
variable’s value as the movie plays.

Variables can hold any type of data: number, string, Boolean, object, or movie
clip. The type of data a variable contains affects how the variable’s value changes
when it is assigned in a script.

Typical types of information you can store in a variable include a URL, a user’s
name, the result of a mathematical operation, the number of times an event
occurred, or whether a button has been clicked. Each movie and movie clip
instance has its own set of variables, with each variable having its own value
independent of variables in other movies or movie clips.

Naming a variable

A variable’s name must follow these rules:

• It must be an identifier.

• It cannot be a keyword or a Boolean literal (true or false).

• It must be unique within its scope. (See “Scoping a variable” on page 48.)
Chapter 246

Typing a variable

In Flash, you do not have to explicitly define a variable as holding either a
number, a string, or other data type. Flash determines the data type of a variable
when the variable is assigned:

x = 3;

In the expression x = 3, Flash evaluates the element on the right side of the
operator and determines that it is of type number. A later assignment may change
the type of x; for example, x = "hello" changes the type of x to a string. A
variable that hasn’t been assigned a value has a type of undefined.

ActionScript converts data types automatically when an expression requires it. For
example, when you pass a value to the trace action, trace automatically converts
the value to a string and sends it to the Output window. In expressions with
operators, ActionScript converts data types as needed; for example, when used
with a string, the + operator expects the other operand to be a string:

"Next in line, number " + 7

ActionScript converts the number 7 to the string "7" and adds it to the end of the
first string, resulting in the following string:

"Next in line, number 7"

When you debug scripts, it’s often useful to determine the data type of an
expression or variable to understand why it is behaving a certain way. You can do
this with the typeof operator, as in this example:

trace(typeof(variableName));

To convert a string to a numerical value, use the Number function. To convert a
numerical value to a string, use the String function. See their individual entries
in Chapter 7, “ActionScript Dictionary” on page 157.
Writing Scripts with ActionScript 47

Scoping a variable

A variable’s “scope” refers to the area in which the variable is known and can be
referenced. Variables in ActionScript can be either global or local. A global
variable is shared among all Timelines; a local variable is only available within its
own block of code (between the curly braces).

You can use the var statement to declare a local variable inside a script. For
example, the variables i and j are often used as loop counters. In the following
example, i is used as a local variable; it only exists inside the function makeDays:

function makeDays(){
var i
for(i = 0; i < monthArray[month]; i++) {

_root.Days.attachMovie("DayDisplay", i, i + 2000);

_root.Days[i].num = i + 1;
_root.Days[i]._x = column * _root.Days[i]._width;
_root.Days[i]._y = row * _root.Days[i]._height;

column = column + 1;

if (column == 7) {

column = 0;
row = row + 1;

}
}

}

Local variables can also help prevent name collisions, which can cause errors in
your movie. For example, if you use name as a local variable, you could use it to
store a user name in one context and a movie clip instance name in another;
because these variables would run in separate scopes, there would be no collision.

It’s good practice to use local variables in the body of a function so that the
function can act as an independent piece of code. A local variable is only
changeable within its own block of code. If an expression in a function uses a
global variable, something outside the function could change its value, which
would change the function.
Chapter 248

Variable declaration

To declare global variables, use the setVariables action or the assignment (=)
operator. Both methods achieve the same results.

To declare local variables, use the var statement inside the body of a function.
Local variables are scoped to the block, and expire at the end of the block. Local
variables not declared within a block expire at the end of their script.

Note: The call action also creates a new local variable scope for the script it calls. When
the called script exits, this local variable scope disappears. However, this is not
recommended because the call action has been replaced by the with action which is
more compatible with dot syntax.

To test the value of a variable, use the trace action to send the value to the
Output window. For example, trace(hoursWorked) sends the value of the
variable hoursWorked to the Output window in test-movie mode. You can also
check and set the variable values in the Debugger in test-movie mode. For more
information, see Chapter 6, “Troubleshooting ActionScript.”

Using variables in a script

You must declare a variable in a script before you can use it in an expression. If
you use an undeclared variable, as in the following example, the variable’s value
will be undefined and your script will generate an error:

getURL(myWebSite);
myWebSite = "http://www.shrimpmeat.net";

The statement declaring the variable myWebSite must come first so that the
variable in the getURL action can be replaced with a value.

You can change the value of a variable many times in a script. The type of data
that the variable contains affects how and when the variable changes. Primitive
data types, such as strings and numbers, are passed by value. This means that the
actual content of the variable is passed to the variable.

In the following example, x is set to 15 and that value is copied into y. When x is
changed to 30, the value of y remains 15 because y doesn’t look to x for its value;
it contains the value of x that it was passed.

var x = 15;
var y = x;
var x = 30;
Writing Scripts with ActionScript 49

As another example, the variable in contains a primitive value, 9, so the actual
value is passed to the sqrt function and the returned value is 3:

function sqrt(x){
return x * x;

}

var in = 9;
var out = sqr(in);

The value of the variable in does not change.

The object data type can contain such a large and complex amount of information
that a variable with this type doesn’t hold the actual value; it holds a reference to
the value. This reference is like an alias that points to the contents of the variable.
When the variable needs to know its value, the reference asks for the contents and
returns the answer without transferring the value to the variable.

The following is an example of passing by reference:

var myArray = ["tom", "dick"];
var newArray = myArray;
myArray[1] = "jack";
trace(newArray);

The above code creates an Array object called myArray that has two elements. The
variable newArray is created and passed a reference to myArray. When the second
element of myArray is changed, it affects every variable with a reference to it. The
trace action would send ["tom", "jack"] to the Output window.

In the next example, myArray contains an Array object, so it is passed to function
zeroArray by reference. The zeroArray function changes the content of the
array in myArray.

function zeroArray (array){
var i;
for (i=0; i < array.length; i++) {

array[i] = 0;
}

}

var myArray = new Array();
myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;

var out = zeroArray(myArray)

The function zeroArray accepts an Array object as an argument and sets all
the elements of that array to 0. It can modify the array because the array is
passed by reference.
Chapter 250

References to all objects other than movie clips are called hard references because if
an object is referenced, it cannot be deleted. A reference to a movie clip is a special
kind of reference called a soft reference. Soft references do not force the referenced
object to exist. If a movie clip is destroyed with an action such as
removeMovieClip, any reference to it will no longer work.

Using operators to manipulate values
in expressions
An expression is any statement that Flash can evaluate that will return a value. You
can create an expression by combining operators and values, or by calling a
function. When you write an expression in the Actions panel in Normal Mode,
make sure the Expression box is checked in the Parameters panel, otherwise the
field will contain the literal value of a string.

Check the Expression box next to a field to create an expression

Operators are characters that specify how to combine, compare, or modify the
values of an expression. The elements that the operator performs on are called
operands. For example, in the following statement, the + operator adds the value of
a numeric literal to the value of the variable foo; foo and 3 are the operands:

foo + 3

This section describes general rules about common types of operators. For
detailed information on each operator mentioned here, as well as special operators
that don’t fall into these categories, see Chapter 7, “ActionScript Dictionary.”

Expression box
Writing Scripts with ActionScript 51

Operator precedence

When two or more operators are used in the same statement, some operators
take precedence over others. ActionScript follows a precise hierarchy to determine
which operators to execute first. For example, multiplication is always performed
before addition; however, items in parentheses take precedence over
multiplication. So, without parentheses, ActionScript performs the multiplication
in the following example first:

total = 2 + 4 * 3;

The result is 14.

But when parentheses surround the addition operation, ActionScript performs the
addition first:

total = (2 + 4) * 3;

The result is 18.

For a table of all operators and their precedence, see Appendix B, “Operator
Precedence and Associativity.”

Operator associativity

When two or more operators share the same precedence, their associativity
determines the order in which they are performed. Associativity can either
be left-to-right or right-to-left. For example, the multiplication operator has
an associativity of left-to-right; therefore, the following two statements
are equivalent:

total = 2 * 3 * 4;
total = (2 * 3) * 4;

For a table of all operators and their associativity, see Appendix B, “Operator
Precedence and Associativity.”
Chapter 252

Numeric operators

Numeric operators add, subtract, multiply, divide, and perform other arithmetic
operations. Parentheses and the minus sign are arithmetic operators. The
following table lists ActionScript’s numeric operators:

Comparison operators

Comparison operators compare the values of expressions and return a Boolean
value (true or false). These operators are most commonly used in loops and in
conditional statements. In the following example, if variable score is 100, a
certain movie loads; otherwise, a different movie loads:

if (score == 100){
loadMovie("winner.swf", 5);

} else {
loadMovie(“loser.swf", 5);
}

The following table lists ActionScript’s comparison operators:

Operator Operation performed

+ Addition

* Multiplication

/ Division

% Modulo

- Subtraction

++ Increment

-- Decrement

Operator Operation performed

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal
Writing Scripts with ActionScript 53

String operators

The + operator has a special effect when it operates on strings: it concatenates the
two string operands. For example, the following statement adds:

"Congratulations," to "Donna!":

"Congratulations, " + "Donna!"

The result is "Congratulations, Donna!" If only one of the + operator’s
operands is a string, Flash converts the other operand to a string.

The comparison operators >, >=, <, and <= also have a special effect when
operating on strings. These operators compare two strings to determine which is
first in alphabetical order. The comparison operators only compare strings if both
operands are strings. If only one of the operands is a string, ActionScript converts
both operands to numbers and performs a numeric comparison.

Note: ActionScript’s data typing in Flash 5 allows the same operators to be used on
different types of data. It is no longer necessary to use the Flash 4 string operators (for
example, eq, ge, and lt) unless you are exporting as a Flash 4 movie.

Logical operators

Logical operators compare Boolean (true and false) values and return a third
Boolean value. For example, if both operands evaluate to true, the logical AND
operator (&&) returns true. If one or both of the operands evaluate to true, the
logical OR operator (||) returns false. Logical operators are often used in
conjunction with comparison operators to determine the condition of an if
action. For example, in the following script, if both expressions are true, the if
action will execute:

if ((i > 10) && (_framesloaded > 50)){
play();

}

The following table lists ActionScript’s logical operators:

Operator Operation performed

&& Logical AND

|| Logical OR

! Logical NOT
Chapter 254

Bitwise operators

Bitwise operators internally manipulate floating-point numbers to change them
into 32-bit integers, which are easier to work with. The exact bitwise operation
performed depends on the operator, but all bitwise operations evaluate each digit
of a floating-point number separately to compute a new value.

The following table lists ActionScript’s bitwise operators:

Operator Operation performed

& Bitwise And

| Bitwise Or

^ Bitwise Xor

~ Bitwise Not

<< Shift left

>> Shift right

>>> Shift right zero fill
Writing Scripts with ActionScript 55

Equality and assignment operators

You can use the equality (==) operator to determine whether the values or
identities of two operands are equal. This comparison returns a Boolean (true
or false) value. If the operands are strings, numbers, or Boolean values, they
are compared by value. If the operands are objects or arrays, they are compared
by reference.

You can use the assignment (=) operator to assign a value to a variable, as in
the following:

password = “Sk8tEr”;

You can also use the assignment operator to assign multiple variables in the
same expression. In the following statement, the value of b is assigned to the
variables c, and d:

a = b = c = d;

You can also use compound assignment operators to combine operations.
Compound operators perform on both operands and then assign that new value
to the first operand. For example, the following two statements are equivalent:

x += 15;
x = x + 15;

The following table lists ActionScript’s equality and assignment operators:

Operator Operation performed

== Equality

!= Inequality

= Assignment

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment

%= Modulo and assignment

/= Division and assignment

<<= Bitwise shift left and assignment

>>= Bitwise shift right and assignment

>>>= Shift right zero fill and assignment

^= Bitwise Xor and assignment

|= Bitwise Or and assignment

&= Bitwise And and assignment
Chapter 256

Dot and array access operators

You can use the dot operator (.) and the array access operator ([]) to access
any predefined or custom ActionScript object properties, including those of
a movie clip.

The dot operator uses the name of an object on its left side and the name of a
property or variable on its right side. The property or variable name can’t be a
string or a variable that evaluates to a string; it must be an identifier. The following
are examples using the dot operator:

year.month = "June";
year.month.day = 9;

The dot operator and the array access operator perform the same role, but the dot
operator takes an identifier as its property and the array access operator evaluates
its contents to a name and then accesses the value of that named property. For
example, the following two lines of code access the same variable velocity in the
movie clip rocket:

rocket.velocity;
rocket["velocity"];

You can use the array access operator to dynamically set and retrieve instance
names and variables. For example, in the following code, the expression inside the
[] operator is evaluated and the result of the evaluation is used as the name of the
variable to be retrieved from movie clip name:

name["mc" + i]

If you are familiar with the Flash 4 ActionScript slash syntax, you may have done
the same thing using the eval function, as in the following:

eval("mc" & i);

The array access operator can also be used on the left side of an assignment
statement. This allows you to dynamically set instance, variable, and object
names, as in the following example:

name[index] = "Gary";

Again, this is equivalent to the following Flash 4 ActionScript slash syntax:

Set Variable: "name:" & index = "Gary"

The array access operator can also be nested with itself to simulate
multidimensional arrays.

chessboard[row][column]

This is equivalent to the following slash syntax:

eval("chessboard/" & row & ":" & column)

Note: If you want to write ActionScript that is compatible with the Flash 4 Player, you can
use the eval action with the add operator.
Writing Scripts with ActionScript 57

Using actions
Actions are ActionScript’s statements, or commands. Multiple actions assigned to
the same frame or object create a script. Actions can act independently of each
other, as in the following statements:

swapDepths("mc1", "mc2");
gotoAndPlay(15);

You can also nest actions by using one action inside another; this allows actions to
affect each other. In the following example, the if action tells the gotoAndPlay
action when to execute:

if (i >= 25) {
gotoAndPlay(10);

}

Actions can move the playhead in the Timeline (gotoAndPlay), control the flow
of a script by creating loops (do while) or conditional logic (if), or create new
functions and variables (function, setVariable). The following table lists all
ActionScript actions:

For syntax and usage examples of each action, see individual entries in Chapter 7,
“ActionScript Dictionary.”

Note: In this book, the ActionScript term action is synonymous with the JavaScript
term statement.

Actions

break evaluate include print stopDrag

call for loadMovie printAsBitmap swapDepths

comment for...in loadVariables removeMovieClip tellTarget

continue fsCommand nextFrame
nextScene

return toggleHighQuality

delete function on setVariable stopDrag

do...while getURL onClipEvent setProperty trace

duplicate
MovieClip

gotoAndPlay
gotoAndStop

play startDrag unloadMovie

else if prevFrame stop var

else if ifFrameLoaded prevScene stopAllSounds while
Chapter 258

Writing a target path

To use an action to control a movie clip or loaded movie, you must specify its
name and its address, called a target path. The following actions take one or more
target paths as arguments:

• loadMovie

• loadVariables

• unloadMovie

• setProperty

• startDrag

• duplicateMovieClip

• removeMovieClip

• print

• printAsBitmap

• tellTarget

For example, the loadMovie action takes the arguments URL, Location, and
Variables. The URL is the location on the Web of the movie you want to load.
The Location is the target path into which the movie will be loaded.

loadMovie(URL, Location, Variables);

Note: The Variables argument is not required for this example.

The following statement loads the URL http://www.mySite.com/myMovie.swf
into the instance bar on the main Timeline, _root; _root.bar is the
target path;

loadMovie("http://www.mySite.com/myMovie.swf", _root.bar);

In ActionScript you identify a movie clip by its instance name. For example, in
the following statement, the _alpha property of the movie clip named star is set
to 50% visibility:

star._alpha = 50;

To give a movie clip an instance name:

1 Select the movie clip on the Stage.

2 Choose Window > Panels > Instance.

3 Enter an instance name in the Name field.
Writing Scripts with ActionScript 59

To identify a loaded movie:

Use _levelX where X is the level number specified in the loadMovie action that
loaded the movie.

For example, a movie loaded into level 5 has the instance name _level5. In the
following example, a movie is loaded into level 5 and its visibility is set to false:

onClipEvent(load) {
loadMovie("myMovie.swf", 5);

}
onClipEvent(enterFrame) {

_level5._visible = false;
}

To enter a movie’s target path:

Click the Insert Target Path button in the Actions panel, and select a movie clip
from the list that appears.

For more information about writing target paths, see Chapter 4, “Working with
Movie Clips.”

Controlling flow in scripts
ActionScript uses if, for, while, do...while, and for...in actions to perform
an action depending on whether a condition exists.

Using "if" statements

Statements that check whether a condition is true or false begin with the term
if. If the condition exists, ActionScript executes the statement that follows. If
the condition doesn’t exist, ActionScript skips to the next statement outside the
block of code.

To optimize your code’s performance, check for the most likely conditions first.

The following statements test several conditions. The term else if specifies
alternative tests to perform if previous conditions are false.

if ((password == null) || (email == null)){
gotoAndStop("reject");

} else {
gotoAndPlay(“startMovie”);

}

Chapter 260

Repeating an action

ActionScript can repeat an action a specified number of times or while a specific
condition exists. Use the while, do...while, for, and for...in actions
to create loops.

To repeat an action while a condition exists:

Use the while statement.

A while loop evaluates an expression and executes the code in the body of
the loop if the expression is true. After each statement in the body is executed,
the expression is evaluated again. In the following example, the loop executes
four times:

i = 4
while (i > 0) {

myMC.duplicateMovieClip("newMC" + i, i);
i --;

}

You can use the do...while statement to create the same kind of loop as a while
loop. In a do...while loop the expression is evaluated at the bottom of the code
block so the loop always runs at least once, as in the following:

i = 4
do {

myMC.duplicateMovieClip("newMC" +i, i);
i --;

} while (i > 0);

To repeat an action using a built-in counter:

Use the for statement.

Most loops use a counter of some kind to control how many times the loop runs.
You can declare a variable and write a statement that increases or decreases the
variable each time the loop executes. In the for action, the counter and the
statement that increments the counter are part of the action, as in the following:

for (i = 4; i > 0; i--){
myMC.duplicateMovieClip("newMC" + i, i + 10);

}

Writing Scripts with ActionScript 61

To loop through the children of a movie clip or object:

Use the for..in statement.

Children include other movie clips, functions, objects, and variables. The
following example uses trace to print its results in the Output window:

myObject = { name:'Joe', age:25, city:'San Francisco' };
for (propertyName in myObject) {

trace("myObject has the property: " + propertyName + ", with
the value: " + myObject[propertyName]);
}

This example produces the following results in the Output window:

myObject has the property: name, with the value: Joe
myObject has the property: age, with the value: 25
myObject has the property: city, with the value: San Francisco

You may want your script to iterate over a particular type of child—for example,
over only movie clip children. You can do this with for...in in conjunction with
the typeof operator.

for (name in myMovieClip) {
if (typeof (myMovieClip[name]) == "movieclip") {

trace("I have a movie clip child named " + name);
}

}

Note: The for..in statement iterates over properties of objects in the iterated object's
prototype chain. If a child object’s prototype is parent, for..in will also iterate over the
properties of parent. See “Creating inheritance” on page 74.

For more information on each action, see individual entries in Chapter 7,
“ActionScript Dictionary.”
Chapter 262

Using predefined functions
A function is a block of ActionScript code that can be reused anywhere in a
movie. If you pass specific values called arguments to a function, the function will
operate on those values. A function can also return values. Flash has predefined
functions that allow you to access certain information and perform certain tasks,
such as collision detection (hitTest), getting the value of the last key pressed
(keycode), and getting the version number of the Flash Player hosting the
movie (getVersion).

Calling a function

You can call a function in any Timeline from any Timeline, including a loaded
movie. Each function has its own characteristics and some require you to pass
certain values. If you pass more arguments than the function requires, the extra
values are ignored. If you don’t pass a required argument, the empty arguments are
assigned the undefined data type, which can cause errors when you export a
script. To call a function, it must be in a frame that the playhead has reached.

Flash’s predefined functions are listed in the following table:

Note: String functions are deprecated and are not listed in the above table.

To call a function in Expert Mode:

Use the name of the function. Pass any required arguments inside parentheses.

The following example calls the initialize function which requires no
arguments:

initialize();

Boolean getTimer isFinite newline scroll

escape getVersion isNaN number String

eval globalToLocal keycode parseFloat targetPath

false hitTest localToGlobal parseInt true

getProperty int maxscroll random unescape
Writing Scripts with ActionScript 63

To call a function in Normal Mode:

Use the evaluate action. Enter the function name and any required arguments in
the Expression field.

Use the evaluate action to call a function in Normal Mode

To call a function on another Timeline use a target path. For example, to call the
function calculateTax that was declared in the instance functionsMovieClip,
use the following path:

_root.functionsMovieClip.calculateTax(total);

Note: Pass any arguments inside the parentheses.

For more information on each function, including deprecated string functions, see
individual entries in Chapter 7, “ActionScript Dictionary.”
Chapter 264

Creating custom functions
You can define functions to execute a series of statements on passed values. Your
functions can also return values. Once a function is defined, it can be called from
any Timeline, including the Timeline of a loaded movie.

A function can be thought of as a “black box”: when a function is called, it is
provided with input (arguments). It performs some operation and then generates
output (a return value). A well-written function has carefully placed comments
about its input, output, and purpose. This way, a user of the function does not
need to understand exactly how the function works.

Defining a function

Functions, like variables, are attached to the movie clip that defines them. When a
function is redefined, the new definition replaces the old definition.

To define a function, use the function action followed by the name of the
function, any arguments to be passed to the function, and the ActionScript
statements that indicate what the function does.

The following is a function named Circle with the argument radius:

function Circle(radius) {
this.radius = radius;
this.area = Math.PI * radius * radius;

}

Note: The keyword this, used in a function body, is a reference to the movie clip that the
function belongs to.

You can also define a function by creating a function literal. A function literal is an
unnamed function that is declared in an expression instead of in a statement. You
can use a function literal to define a function, return its value, and assign it to a
variable in one expression, as in the following:

area = (function () {return Math.PI * radius *radius;})(5);
Writing Scripts with ActionScript 65

Passing arguments to a function

Arguments are the elements on which a function executes its code. (In this book,
the terms argument and parameter are interchangeable.) For example, the
following function takes the arguments initials and finalScore:

function fillOutScorecard(initials, finalScore) {
scorecard.display = initials;
scorecard.score = finalScore;

}

When the function is called, the required arguments must be passed to the
function. The function substitutes the passed values for the arguments in the
function definition. In this example, scorecard is the instance name of a movie
clip; display and score are input text fields in the instance. The following
function call assigns the variable display the value "JEB" and the variable score
the value 45000:

fillOutScorecard("JEB", 45000);

The argument initials in the function fillOutScorecard is similar to a local
variable; it exists while the function is called and ceases to exist when the function
exits. If you omit arguments during a function call, the omitted arguments are
passed as undefined. If you provide extra arguments in a function call that are
not required by the function declaration, they are ignored.

Using local variables in a function

Local variables are valuable tools for organizing code and making it easier to
understand. When a function uses local variables, it can hide its variables from all
other scripts in the movie; local variables are scoped to the body of the function
and are destroyed when the function exits. Any arguments passed to a function are
also treated as local variables.

Note: If you modify global variables in a function, use script comments to document
these modifications.
Chapter 266

Returning values from a function

You can use the return action to return values from functions. The return
action stops the function and replaces it with the value of the return action. If
Flash doesn’t encounter a return action before the end of a function, an empty
string is returned. For example, the following function returns the square of
the argument x:

function sqr(x) {
return x * x;

}

Some functions perform a series of tasks without returning a value. For example,
the following function initializes a series of global variables:

function initialize() {
boat_x = _root.boat._x;
boat_y = _root.boat._y;
car_x = _root.car._x;
car_y = _root.car._y;

}

Calling a function

To invoke a function using the Actions panel in Normal Mode, you use the
evaluate action. Pass the required arguments inside parentheses. You can call
a function in any Timeline from any Timeline, including a loaded movie. For
example, the following statement invokes the function sqr in movie clip
MathLib on the main Timeline, passes it the argument 3, and stores the result
in the variable temp:

var temp = _root.MathLib.sqr(3);

In Flash 4, to simulate calling a function you could write a script on a frame after
the end of the movie and invoke it by passing the name of the frame label to the
call action. For example, if a script that initialized variables was on a frame
labeled initialize, you would call it as follows:

call("initialize");

This kind of script was not a true function because it could not accept arguments
and it could not return a value. Although the call action still functions in Flash
5, its use is not recommended.
Writing Scripts with ActionScript 67

Using predefined objects
You can use Flash’s predefined objects to access certain kinds of information. Most
predefined objects have methods (functions assigned to an object) that you can call
to return a value or perform an action. For example, the Date object returns
information from the system clock and the Sound object lets you control sound
elements in your movie.

Some predefined objects have properties whose values you can read. For example,
the Key object has constant values that represent keys on the keyboard. Each
object has its own characteristics and abilities that can be used in your movie.

The following are Flash’s predefined objects:

• Array

• Boolean

• Color

• Date

• Key

• Math

• MovieClip

• Number

• Object

• Selection

• Sound

• String

• XML

• XMLSocket

Movie clip instances are represented as objects in ActionScript. You can call
predefined movie clip methods just as you would call the methods of any other
ActionScript object.

For detailed information on each object, see its entry in Chapter 7, “ActionScript
Dictionary.”
Chapter 268

Creating an object

There are two ways to create an object: the new operator and the object initializer
operator ({}). You can use the new operator to create an object from a predefined
object class, or from a custom defined object class. You can use the object
initializer operator ({}) to create an object of generic type Object.

To use the new operator to create an object, you need to use it with a constructor
function. (A constructor function is simply a function whose sole purpose is to
create a certain type of object.) ActionScript’s predefined objects are essentially
prewritten constructor functions. The new object instantiates, or creates, a copy of
the object and assigns it all the properties and methods of that object. This is
similar to dragging a movie clip from the Library to the Stage in a movie. For
example, the following statements instantiate a Date object:

currentDate = new Date();

You can access the methods of some predefined objects without instantiating
them. For example, the following statement calls the Math object method random:

Math.random();

Each object that requires a constructor function has a corresponding element
in the Actions panel toolbox; for example, new Color, new Date, new String,
and so on.

To create an object with the new operator in Normal Mode:

1 Choose setVariable

2 Enter an identifier in the Name field.

3 Enter new Object, new Color, and so on in the Value field. Enter any
arguments required by the constructor function in parentheses.

4 Check the Expression box of the Value field.

If you don’t check the Expression box, the entire value will be a string literal.

In the following code, the object c is created from the constructor Color:

c = new Color(this);

Note: An object name is a variable with the object data type assigned to it.

To access a method in Normal Mode:

1 Select the evaluate action.

2 Enter the name of the object in the Expression field.

3 Enter a property of the object in the Expression field.
Writing Scripts with ActionScript 69

To use the object initializer operator ({}) in Normal Mode:

1 Select the setVariable action.

2 Enter name in the Variable field; this is the name of the new object.

3 Enter the property name and value pairs separated by a colon inside the object
initializer operator ({}).

For example, in this statement the property names are radius and area and their
values are 5 and the value of an expression:

myCircle = {radius: 5, area:(pi * radius * radius)};

The parentheses cause the expression to evaluate. The returned value is the value
of the variable area.

You can also nest array and object initializers, as in this statement:

newObject = {name: "John Smith", projects: ["Flash",
"Dreamweaver"]};

For detailed information on each object, see its entry in Chapter 7, “ActionScript
Dictionary.”

Accessing object properties

Use the dot (.) operator to access the value of properties in an object. The name of
the object goes on the left side of the dot, and the name of the property goes on
the right side. For example, in the following statement, myObject is the object
and name is the property:

myObject.name

To assign a value to a property in Normal Mode, use the setVariable action:

myObject.name = "Allen";

To change the value of a property, assign a new value as shown here:

myObject.name = "Homer";

You can also use the array access operator ([]) to access the properties of an object.
See “Dot and array access operators” on page 57.

Calling object methods

You can call an object’s method by using the dot operator followed by the
method. For example, the following example calls the setVolume method of
the Sound object:

s = new Sound(this);
s.setVolume(50);

To call the method of a predefined object in Normal Mode, use the
evaluate action.
Chapter 270

Using the MovieClip object

You can use the methods of the predefined MovieClip object to control movie clip
symbol instances on the Stage. The following example tells the instance
dateCounter to play:

dateCounter.play();

For detailed information on the MovieClip object, see its entry in Chapter 7,
“ActionScript Dictionary.”

Using the Array object

The Array object is a commonly used predefined ActionScript object that stores its
data in numbered properties instead of named properties. An array element’s
name is called an index. This is useful for storing and retrieving certain types of
information such as lists of students or a sequence of moves in a game.

You can assign elements of the Array object just as you would the property of any
object:

move[1] = "a2a4";
move[2] = "h7h5";
move[3] = "b1c3";
...
move[100] = "e3e4";

To access the second element of the array, use the expression move[2].

The Array object has a predefined length property that is the value of the number
of elements in the array. When an element of the Array object is assigned and the
element’s index is a positive integer such that index >= length, length is
automatically updated to index + 1.
Writing Scripts with ActionScript 71

Using custom objects
You can create custom objects to organize information in your scripts for easier
storage and access by defining an object’s properties and methods. After you create
a master object or “class,” you can use or “instantiate” copies (that is, instances) of
that object in a movie. This allows you to reuse code and conserve file size.

An object is a complex data type containing zero or more properties. Each
property, like a variable, has a name and a value. Properties are attached to the
object and contain values that can be changed and retrieved. These values can be
of any data type: string, number, Boolean, object, movie clip, or undefined. The
following properties are of various data types:

customer.name = "Jane Doe";
customer.age = 30;
customer.member = true;
customer.account.currentRecord = 000609;
customer.mcInstanceName._visible = true;

The property of an object can also be an object. In line 4 of the previous example,
account is a property of the object customer and currentRecord is a property
of the object account. The data type of the currentRecord property is number.
Chapter 272

Creating an object

You can use the new operator to create an object from a constructor function. A
constructor function is always given the same name as the type of object it is
creating. For example, a constructor that creates an account object would be called
Account. The following statement creates a new object from the function called
MyConstructorFunction:

new MyConstructorFunction (argument1, argument2, ... argumentN);

When MyConstructorFunction is called, Flash passes it the hidden argument
this, which is a reference to the object that the MyConstructorFunction is
creating. When you define a constructor, this allows you to refer to the objects
that the constructor will create. For example, the following is a constructor
function that creates a circle:

function Circle(radius) {
this.radius = radius;
this.area = Math.PI * radius * radius;

}

Constructor functions are commonly used to fill in the methods of an object.

function Area() {
this.circleArea = MAth.PI * radius * radius;

}

To use an object in a script, you must assign it to a variable. To create a new circle
object with the radius 5, use the new operator to create the object and assign it to
the local variable myCircle:

var myCircle = new Circle(5);

Note: Objects have the same scope as the variable to which they are assigned. See
“Scoping a variable” on page 48.
Writing Scripts with ActionScript 73

Creating inheritance

All functions have a prototype property that is created automatically when the
function is defined. When you use a constructor function to create a new object,
all the properties and methods of the constructor’s prototype property become
properties and methods of the __proto__ property of the new object. The
prototype property indicates the default property values for objects created with
that function. Passing values using the __proto__ and prototype properties is
called inheritance.

Inheritance proceeds according to a definite hierarchy. When you call an object’s
property or method, ActionScript looks at the object to see if such an element
exists. If it doesn’t exist, ActionScript looks at the object’s __proto__ property for
the information (object.__proto__). If the called property is not a property of
the object’s __proto__ object, ActionScript looks at
object.__proto__.__proto__.

It’s common practice to attach methods to an object by assigning them to
the object’s prototype property. The following steps describe how to define
a sample method:

1 Define the constructor function Circle, as follows:

function Circle(radius) {
this.radius = radius;

}

2 Define the area method of the Circle object. The area method will calculate
the area of the circle. You can use a function literal to define the area method
and set the area property of the circle’s prototype object, as follows:

Circle.prototype.area = function () {
return Math.PI * this.radius * this.radius;

}

3 Create an instance of the Circle object, as follows:

var myCircle = new Circle(4);

4 Call the area method of the new myCircle object, as follows:

var myCircleArea = myCircle.area()

ActionScript searches the myCircle object for the area method. Since the
object doesn’t have an area method, its prototype object Circle.prototype
is searched for the area method. ActionScript finds it and calls it.
Chapter 274

You can also attach a method to an object by attaching the method to every
individual instance of the object, as in this example:

function Circle(radius) {
this.radius = radius;
this.area = function() {

return Math.PI * this.radius * this.radius;
}

}

This technique is not recommended. Using the prototype object is more
efficient, because only one definition of area is necessary, and that definition is
automatically copied into all instances created by the Circle function.

The prototype property is supported by Flash Player version 5 and later. For
more information, see Chapter 7, “ActionScript Dictionary.”

Opening Flash 4 files
ActionScript has changed considerably with the release of Flash 5. It is now an
object-oriented language with multiple data types and dot syntax. Flash 4
ActionScript only had one true data type: string. It used different types of
operators in expressions to indicate whether the value should be treated as a string
or as a number. In Flash 5, you can use one set of operators on all data types.
Writing Scripts with ActionScript 75

When you use Flash 5 to open a file that was created in Flash 4, Flash
automatically converts ActionScript expressions to make them compatible with
the new Flash 5 syntax. You’ll see the following data type and operator conversions
in your ActionScript code:

• The = operator in Flash 4 was used for numeric equality. In Flash 5, == is the
equality operator and = is the assignment operator. Any = operators in Flash 4
files are automatically converted to ==.

• Flash automatically performs type conversions to ensure that operators behave
as expected. Because of the introduction of multiple data types, the following
operators have new meanings:

+, ==, !=, <>, <, >, >=, <=

• In Flash 4 ActionScript, these operators were always numeric operators. In
Flash 5, they behave differently depending on the data types of the operands.
To prevent any semantic differences in imported files, the Number function is
inserted around all operands to these operators. (Constant numbers are already
obviously numbers, so they are not enclosed in Number).

• In Flash 4, the escape sequence \n generated a carriage return character (ASCII
13). In Flash 5, to comply with the ECMA-262 standard, \n generates a line-
feed character (ASCII 10). An \n sequence in Flash 4 FLA files is automatically
converted to \r.

• The & operator in Flash 4 was used for string addition. In Flash 5, & is the
bitwise AND operator. The string addition operator is now called add. Any &
operators in Flash 4 files are automatically converted to add operators.

• Many functions in Flash 4 did not require closing parentheses, for example,
Get Timer , Set Variable, Stop, and Play. To create consistent syntax, the
Flash 5 getTimer function and all actions now require closing parentheses.
These parentheses are automatically added during the conversion.

• When the getProperty function is executed on a movie clip that doesn’t exist,
it returns the value undefined, not 0, in Flash 5. And undefined == 0 is
false in Flash 5 ActionScript. Flash fixes this problem when converting Flash
4 files by introducing Number functions in equality comparisons. In the
following example, Number forces undefined to be converted to 0 so the
comparison will succeed:

getProperty("clip", _width) == 0
Number(getProperty("clip", _width)) == Number(0)

Note: If you used any Flash 5 keywords as variable names in your Flash 4 ActionScript, the
syntax will return an error in Flash 5. To fix this, rename your variables in all locations. See
“Keywords” on page 41.
Chapter 276

Using Flash 5 to create Flash 4 content
If you are using Flash 5 to create content for the Flash 4 Player (by exporting as
Flash 4), you won’t be able to take advantage of all the new features present in
Flash 5 ActionScript. However, many new ActionScript features are still available.
Flash 4 ActionScript has only one basic primitive data type which is used for both
numeric and string manipulation. When you author a movie for the Flash 4
Player, you need to use the deprecated string operators located in the String
Operators category in the toolbox.

You can use the following Flash 5 features when you export to the Flash 4
SWF file format:

• The array and object access operator ([]).

• The dot operator (.).

• Logical operators, assignment operators, and pre-increment and post-
increment/decrement operators.

• The modulo operator(%), all methods and properties of the Math object.

These operators and functions are not supported natively by the Flash 4 Player.
Flash 5 must export them as series approximations. This means that the results
are only approximate. In addition, due to the inclusion of series
approximations in the SWF file, these functions take up more room in Flash 4
SWF files than they do in Flash 5 SWF files.

• The for, while, do..while, break, and continue actions.

• The print and printAsBitmap actions.
Writing Scripts with ActionScript 77

The following Flash 5 features can’t be used in movies exported to the Flash 4
SWF file format:

• Custom functions

• XML support

• Local variables

• Predefined objects (except Math)

• Movie clip actions

• Multiple data types

• eval with dot syntax (for example, eval("_root.movieclip.variable"))

• return

• new

• delete

• typeof

• for..in

• keycode

• targetPath

• escape

• globalToLocal and localToGlobal

• hitTest

• isFinite and inNaN

• parseFloat and parseInt

• unescape

• _xmouse and _ymouse

• _quality
Chapter 278

3

CHAPTER 3

. .. .
Creating Interaction with ActionScript

An interactive movie involves your audience. Using the keyboard, the mouse, or
both, your audience can jump to different parts of movies, move objects, enter
information, click buttons, and perform many other interactive operations.

You create interactive movies by setting up scripts that run when specific events
occur. Events that can trigger a script occur when the playhead reaches a frame,
when a movie clip loads or unloads, or when the user clicks a button or presses
keys on the keyboard. You use ActionScript to create scripts that tell Flash what
action to perform when the event occurs.

The following basic actions are common ways to control navigation and user
interaction in a movie:

• Playing and stopping movies

• Adjusting a movie’s display quality

• Stopping all sounds

• Jumping to a frame or scene

• Jumping to a different URL

• Checking whether a frame is loaded

• Loading and unloading additional movies

For detailed information on these actions, see Using Flash.
79

To create more complex interactivity, you need to understand the following
techniques:

• Creating a custom cursor

• Getting the mouse position

• Capturing keypresses

• Creating a scrolling text field

• Setting color values

• Creating sound controls

• Detecting collisions

Creating a custom cursor
To hide the standard cursor (that is, the onscreen representation of the mouse
pointer), you use the hide method of the predefined Mouse object. To use a
movie clip as the custom cursor, you use the startDrag action.

Actions attached to a movie clip to create a custom cursor
Chapter 380

To create a custom cursor:

1 Create a movie clip to use as a custom cursor.

2 Select the movie clip instance on the Stage.

3 Choose Window > Actions to open the Object Actions panel.

4 In the Toolbox list, select Objects, then select Mouse, and drag hide to the
Script window.

The code should look like this:

onClipEvent(load){
Mouse.hide();

}

5 In the Toolbox list, select Actions; then drag startDrag to the Script window.

6 Select the Lock Mouse to Center box.

The code should look like this:

onClipEvent(load){
Mouse.hide()
startDrag("this", true);

}

7 Choose Control > Test Movie to use the custom cursor.

Buttons will still function when you use a custom cursor. It’s a good idea to put
the custom cursor on the top layer of the Timeline so that it moves in front of
buttons and other objects as you move the mouse in the movie.

For more information about the methods of the Mouse object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 81

Getting the mouse position
You can use the _xmouse and _ymouse properties to find the location of the
mouse pointer (cursor) in a movie. Each Timeline has an _xmouse and _ymouse
property that returns the location of the mouse within its coordinate system.

The _xmouse and _ymouse properties within the main Timeline and a
movie clip Timeline

The following statement could be placed on any Timeline in the _level0 movie
to return the _xmouse position within the main Timeline:

x_pos = _root._xmouse;

To determine the mouse position within a movie clip, you can use the movie clip’s
instance name. For example, the following statement could be placed on any
Timeline in the _level0 movie to return the _ymouse position in the
myMovieClip instance:

y_pos = _root.myMovieClip._ymouse

You can also determine the mouse position within a movie clip by using the
_xmouse and _ymouse properties in a clip action, as in the following:

onClipEvent(enterFrame){
xmousePosition = _xmouse;
ymousePosition = _ymouse;

}

Chapter 382

The variables x_pos and y_pos are used as containers to hold the values of the
mouse positions. You could use these variables in any script in your movie. In the
following example, the values of x_pos and y_pos update every time the user
moves the mouse.

onClipEvent(mouseMove){
x_pos = _root._xmouse;
y_pos = _root._ymouse;

}

For more information about the _xmouse and _ymouse properties, see their
entries in Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 83

Capturing keypresses
You can use the methods of the predefined Key object to detect the last key the
user pressed. The Key object does not require a constructor function; to use its
methods, you simply call the object itself, as in the following example:

Key.getCode();

You can obtain either virtual key codes or ASCII values of keypresses:

• To obtain the virtual key code of the last key pressed, use the getCode method.

• To obtain the ASCII value of the last key pressed, use the getAscii method.

A virtual key code is assigned to every physical key on a keyboard. For example,
the left arrow key has the virtual key code 37. By using a virtual key code, you can
ensure that your movie’s controls are the same on every keyboard regardless of
language or platform.

ASCII (American Standard Code for Information Interchange) values are assigned
to the first 127 characters in every character set. ASCII values provide information
about a character on the screen. For example, the letter “A” and the letter “a” have
different ASCII values.

A common place for using Key.getCode is in an onClipEvent handler. By
passing keyDown as the parameter, the handler instructs ActionScript to check
for the value of the last key pressed only when a key is actually pressed. This
example uses Key.getCode in an if statement to create navigation controls
for the spaceship.
Chapter 384

To create keyboard controls for a movie:

1 Decide which keys to use and determine their virtual key codes by using one of
these approaches:

• See the list of key codes in Appendix B, “Keyboard Keys and Key
Code Values.”

• Use a Key object constant. (In the Toolbox list, select Objects, then select Key.
Constants are listed in all capital letters.)

• Assign the following clip action, then choose Control > Test Movie and press
the desired key:

onClipEvent(keyDown) {
trace(Key.getCode());

}

2 Select a movie clip on the Stage.

3 Choose Window > Actions.

4 Double-click the onClipEvent action in the Actions category of the toolbox.

5 Choose the Key down event in the parameters pane.

6 Double-click the if action in the Actions category of the toolbox.

7 Click in the Condition parameter, select Objects; then select Key and getCode.

8 Double-click the equality operator (==) in the Operators category of
the toolbox.

9 Enter the virtual key code to the right of the equality operator.

Your code should look like this:

onClipEvent(keyDown) {
if (Key.getCode() == 32) {
}

}

10 Select an action to perform if the correct key is pressed.

For example, the following action causes the main Timeline to go to the next
frame when the Spacebar (32) is pressed:

onClipEvent(keyDown) {
if (Key.getCode() == 32) {

nextFrame();
}

}

For more information about the methods of the Key object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 85

Creating a scrolling text field
You can use the scroll and maxscroll properties to create a scrolling text field.

In the Text Options panel, you can assign a variable to any text field set to Input
Text or Dynamic Text. The text field acts like a window that displays the value of
that variable.

Each variable associated with a text field has a scroll and a maxscroll property.
You can use these properties to scroll text in a text field. The scroll property
returns the number of the topmost visible line in a text field; you can set and
retrieve it. The maxscroll property returns the topmost visible line in a text field
when the bottom line of text is visible; you can read, but not set, this property.

For example, suppose you have a text field that is four lines long. If it contains the
variable speech, that would fill nine lines of the text field, and only part of the
speech variable can be displayed at one time (identified by the solid box):

You can access these properties using dot syntax, as in the following:

textFieldVariable.scroll
myMovieClip.textFieldVariable.scroll
textFieldVariable.maxscroll
myMovieClip.textFieldVariable.maxscroll

Scroll property

Maxscroll property

Visible text field
Chapter 386

To create a scrolling text field:

1 Drag a text field on the Stage.

2 Choose Window > Panels > Text Options.

3 Choose Input Text from the pop-up menu.

4 Enter the variable name text in the Variable field.

5 Drag the text field’s bottom right corner to resize the text field.

6 Choose Window > Actions.

7 Select frame 1 in the main Timeline and assign a set variable action that sets
the value of text.

No text will appear in the field until the variable is set. Therefore, although you
can assign this action to any frame, button, or movie clip, it’s a good idea to
assign the action to frame 1 on the main Timeline, as shown here:

8 Choose Window > Common Libraries > Buttons, and drag a button to
the Stage.

9 Press Alt (Windows) or Option (Macintosh) and drag the button to
create a copy.

10 Select the top button and choose Window > Actions.

11 Drag the set variables action from the toolbox to the Script window in the
Actions panel.

12 Enter text.scroll in the Variable box.
Creating Interaction with ActionScript 87

13 Enter text.scroll -1 in the Value box and select the Expression check box.

14 Select the Down Arrow button and assign the following set
variables action:

text.scroll = text.scroll+1;

15 Choose Control > Test Movie to test the scrolling text field.

For more information about the scroll and maxscroll properties, see their
entries in Chapter 7, “ActionScript Dictionary.”

Setting color values
You can use the methods of the predefined Color object to adjust the color of
a movie clip. The setRGB method assigns hexadecimal RGB (red, green, blue)
values to the object, and the setTransform method sets the percentage and
offset values for the red, green, blue, and transparency (alpha) components of
a color. The following example uses setRGB to change an object’s color based
on user input.

The button action creates a color object and changes the color of the shirt based
on user input

To use the Color object, you need to create an instance of the object and apply it
to a movie clip.
Chapter 388

To set the color value of a movie clip:

1 Select a movie clip on the Stage, and choose Window > Panels > Instance.

2 Enter the instance name colorTarget in the Name box.

3 Drag a text field on the Stage.

4 Choose Window > Panels > Text Options and assign it the variable name input.

5 Drag a button to the Stage and select it.

6 Choose Window > Actions.

7 Drag the set variable action from the toolbox to the Script window.

8 In the Variable box, enter c.

9 In the toolbox, select Objects, then Color, and drag new Color to the
Value box.

10 Select the Expression check box.

11 Click the Target Path button and select colorTarget. Click OK.

The code in the Script window should look like this:

on(release) {
c = new Color(colorTarget);

}

12 Drag the evaluate action from the toolbox to the Script window.

13 Enter c in the Expression box.

14 In the Objects category of the Toolbox list, select Color; then drag setRGB to
the Expression box.

15 Select Functions and drag parseInt to the Expression box.

The code should look like this:

on(release) {
c = new Color(colorTarget);
c.setRGB(parseInt(string, radix));

}

16 For the parseInt string argument, enter input.

The string to be parsed is the value entered into the editable text field.
Creating Interaction with ActionScript 89

17 For the parseInt radix argument, enter 16.

The radix is the base of the number system to be parsed. In this case, 16 is the
base of the hexadecimal system that the Color object uses. The code should
look like this:

on(release) {
c = new Color(colorTarget);
c.setRGB(parseInt(input, 16));

}

18 Choose Control > Test Movie to change the color of the movie clip.

For more information about the methods of the Color object, see their entries in
Chapter 7, “ActionScript Dictionary.”

Creating sound controls
To control sounds in a movie, you use the predefined Sound object. To use the
methods of the Sound object, you must first create a new Sound object. Then you
can use the attachSound method to insert a sound from the library into a movie
while the movie is running. The Sound object’s setVolume method controls the
volume and the setPan method adjusts the left and right balance of a sound.

When the user drags the volume slider, the setVolume method is called.
Chapter 390

To attach a sound to a Timeline:

1 Choose File > Import to import a sound.

2 Select the sound in the library and choose Linkage from the Options menu.

3 Select Export This Symbol and give it the identifier mySound.

4 Select frame 1 in the main Timeline and choose Window > Actions.

5 Drag the set variable action from the toolbox to the Script window.

6 Enter s in the Value box.

7 In the Toolbox list, select Objects, then select Sound, and drag new Sound to
the Value box.

The code should look like this:

s = new Sound();

8 Double-click the evaluate action in the toolbox.

9 Enter s in the Expression box.

10 In the Objects category of the Toolbox list, select Sound, then drag
attachSound to the Expression box.

11 Enter “mySound” in the ID argument of attachSound.

12 Double-click the evaluate action in the toolbox.

13 Enter s in the Expression box.

14 In the Objects category, select Sound, then drag start to the Expression box.

The code should look like this:

s = new Sound();
s.attachSound("mySound");
s.start();

15 Choose Control > Test Movie to hear the sound.
Creating Interaction with ActionScript 91

To create a sliding volume control:

1 Drag a button to the Stage.

2 Select the button and choose Insert > Convert to Symbol. Choose the movie
clip behavior.

This creates a movie clip with the button on it’s first frame.

3 Select the movie clip and choose Edit > Edit Symbol.

4 Select the button and choose Window > Actions.

5 Enter the following actions:

on (press) {
startDrag ("", false, left, top, right, bottom);
dragging = true;

}
on (release, releaseOutside) {

stopDrag ();
dragging = false;

}

The startDrag parameters left, top, right, and bottom are variables set in
a clip action.

6 Choose Edit > Edit Movie to return to the main Timeline.

7 Select the movie clip on the Stage.

8 Enter the following actions:

onClipEvent (load) {
top=_y;
left=_x;
right=_x;
bottom=_y+100;

}

onClipEvent(enterFrame){
if (dragging==true){

_root.s.setVolume(100-(_y-top));
}

}

9 Choose Control > Test Movie to use the volume slider.
Chapter 392

To create a balance sliding control:

1 Drag a button to the Stage.

2 Select the button and choose Insert > Convert to Symbol. Choose the movie
clip property.

3 Select the movie clip and choose Edit > Edit Symbol.

4 Select the button and choose Window > Actions.

5 Enter the following actions:

on (press) {
startDrag ("", false, left, top, right, bottom);
dragging = true;

}
on (release, releaseOutside) {

stopDrag ();
dragging = false;

}

The startDrag parameters left, top, right, and bottom are variables set in
a clip action.

6 Choose Edit > Edit Movie to return to the main Timeline.

7 Select the movie clip on the Stage.

8 Enter the following actions:

onClipEvent(load){
top=_y;
bottom=_y;
left=_x-50;
right=_x+50;
center=_x;

}

onClipEvent(enterFrame){
if (dragging==true){

_root.s.setPan((_x-center)*2);
}

}

9 Choose Control > Test Movie to use the balance slider.

For more information about the methods of the Sound object, see their entries in
Chapter 7, “ActionScript Dictionary.”
Creating Interaction with ActionScript 93

Detecting collisions
You can use the hitTest method of the MovieClip object to detect collisions in a
movie. The hitTest method checks to see if an object has collided with a movie
clip and returns a Boolean value (true or false). You can use the parameters of
the hitTest method to specify the x and y coordinates of a hit area on the Stage,
or use the target path of another movie clip as a hit area.

Each movie clip in a movie is an instance of the MovieClip object. This allows you
to call methods of the object from any instance, as in the following:

myMovieClip.hitTest(target);

You can use the hitTest method to test the collision of a movie clip and a
single point.

“True” appears in the text filed whenever the mouse pointer is over the colored area.

You can also use the hitTest method to test a collision between two movie clips.

“True” appears in the text field whenever one movie clip touches the other.
Chapter 394

To perform collision detection between a movie clip and a point on the Stage:

1 Select a movie clip on the Stage.

2 Choose Window > Actions to open the Object Actions panel.

3 Double-click trace in the Actions category in the toolbox.

4 Select the Expression check box and enter the following in the Expression box:

trace (this.hitTest(_root._xmouse, _root._ymouse, true);

This example uses the _xmouse and _ymouse properties as the x and y
coordinates for the hit area and sends the results to the Output window in Test-
Movie Mode. You can also set a text field on the Stage to display the results or
use the results in an if statement.

5 Choose Control > Test Movie and move the mouse over the movie clip to
test the collision.

To perform collision detection on two movie clips:

1 Drag two movie clips to the Stage and give them the instance names
mcHitArea and mcDrag.

2 Create a text field on the Stage and enter status in the Text Options
Variable box.

3 Select mcHitArea and choose Window > Actions.

4 Double-click evaluate in the toolbox.

5 Enter the following code in the Expression box by selecting items from
the toolbox:

_root.status=this.hitTest(_root.mcDrag);

6 Select the onClipEvent action in the Script window and choose enterFrame
as the event.

7 Select mcDrag and choose Window > Actions.

8 Double-click startDrag in the toolbox.

9 Select the Lock Mouse to Center check box.

10 Select the onClipEvent action in the Script window and choose the
Mouse down event.

11 Double-click stopDrag in the toolbox.

12 Select the onClipEvent action in the Script window and choose the
Mouse up event.

13 Choose Control > Test Movie and drag the movie clip to test the collision
detection.

For more information about the hitTest method, see its entry in Chapter 7,
“ActionScript Dictionary.”
Creating Interaction with ActionScript 95

Chapter 396

4

CHAPTER 4

. .. .
Working with Movie Clips

A movie clip is a mini Flash movie: it has its own Timeline and properties. A
movie clip symbol in the Library may be used multiple times in a Flash movie;
each use is called an instance of the movie clip. Movie clips can be nested inside
each other. To distinguish instances from each other, you can assign each instance
an instance name.

Any object can be placed on the Timeline of a movie clip, including other movie
clips. Movies that are loaded into the Flash Player using loadMovie are also mini
Flash movies. Each movie clip, loaded movie, and the main Timeline in a Flash
movie are objects with properties and methods that can be manipulated by
ActionScript to create complex, nonlinear animation and powerful interactivity.

You control movie clips using actions and MovieClip object methods. Actions
and methods can be attached to frames or buttons in a movie clip (frame and
button actions), or to a specific movie clip instance (clip actions). Actions in a
movie clip can control any Timeline in a movie. To control a Timeline you must
address it by using a target path. A target path indicates the location of the
Timeline in the movie.

You can also turn a movie clip into a “smart” clip; a movie clip with ActionScript
that can be reprogrammed without using the Actions panel. Smart clips make
it easy to pass objects with complicated ActionScript logic from a programmer
to a designer.
97

About multiple Timelines
Every Flash movie has a main Timeline located at level 0 in the Flash Player. You
can use the loadMovie action to load other Flash movies (SWF files) into the
Flash Player at any level above level 0 (for example, level 1, level 2, level 15). Each
movie loaded into a level of the Flash Player has a Timeline.

Flash movies at any level can have movie clip instances on their Timelines.
Each movie clip instance also has a Timeline and can contain other movie clips
that also have Timelines. The Timelines of movie clips and levels in the Flash
Player are organized hierarchically so that you can organize and easily control
the objects in your movie.

The hierarchy of levels and movie clips in the Flash Player

Flash Player

_level0

_level1

_level2

_level3

movieClip

Child MC Child MC2
Chapter 498

In Flash, this hierarchy of levels and movie clips is called the display list. You can
view the display list in the Movie Explorer when you are authoring in Flash. You
can view the display list in the Debugger when you are playing the movie in
Test-Movie Mode, the stand-alone Flash Player, or in a Web browser.

The Movie Explorer shows the hierarchy of Timelines called the “display list”

Timelines in a Flash movie are objects and all have characteristics (properties) and
the abilities (methods) of the predefined MovieClip object. Timelines have specific
relationships with each other depending on their locations in the display list.
Timelines that are nested inside other Timelines are affected by changes made to
the Timeline on which they live. For example, if portland is a child of oregon
and you change the _xscale property of oregon, portland will also scale.

Timelines can also send messages to each other. For example, an action on the last
frame of one movie clip could tell another movie clip to play.
Working with Movie Clips 99

About the hierarchical relationship of Timelines

When you place a movie clip instance on another movie clip’s Timeline, one
movie clip symbol contains the instance of the other movie clip—the first movie
clip is the child and the second movie clip is its parent. The main Timeline of a
Flash movie is the parent of all the movie clips on its level.

The parent-child relationships of movie clips are hierarchical. To understand
this hierarchy, consider the hierarchy on a computer: the hard drive has a root
directory (or folder) and subdirectories. The root directory is analogous to the
main Timeline of a Flash movie: it is the parent of everything else. The
subdirectories are analogous to movie clips. You can use subdirectories to
organize related content.

Similarly, you can use the movie clip hierarchy in Flash to organize related visual
objects, often in ways similar to the real-world behavior of objects. Any change
you make to a parent movie clip is also performed on its children.

For example, you could create a Flash movie that has a car that moves across the
Stage. You could use a movie clip symbol to represent the car and set up a motion
tween to move it across the Stage.

A motion tween moves the car movie clip on the main Timeline
Chapter 4100

The car is viewed from the side, with two wheels visible. Once you have the car
moving, you want to add wheels that rotate. So you make a movie clip for a car
wheel, and create two instances of this movie clip, named frontWheel and
backWheel. Then you place the wheels on the Timeline of the car movie clip—
not on the main Timeline. As children of car, frontWheel and backWheel are
affected by any changes made to car. This means that they will move with the car
as it tweens across the Stage.

The frontWheel and backWheel instances are placed on the Timeline of the
car movie clip.

To make the wheels rotate, you can set up a motion tween to rotate the wheel
symbol to make both instances spin. Even after you change frontWheel and
backWheel, they will continue to be affected by the tween on their parent movie
clip, car; the wheels will spin, but they will also move with the parent movie clip
car across the Stage.

The wheel symbol in Edit Symbol Mode
Working with Movie Clips 101

Sending messages between Timelines

You can send messages from one Timeline to another. One Timeline contains the
action, called the controller, and another receives the action, called the target. You
can assign an action to a frame or button in a Timeline, or, if the Timeline is a
movie clip, to the movie clip itself.

To target Timelines, you can use actions from the Actions category, or you can use
methods of the MovieClip object from the Objects category in the Actions panel.
For example, you can use the duplicateMovieClip action to target and make
copies of movie clip instances while a movie plays.

You can use actions from the Actions category to target a Timeline.

You can use methods of the MovieClip object to target a Timeline.

To perform multiple actions on the same target, you can use the with action.
Similar to the JavaScript with statement, the ActionScript with action is a
wrapper that lets you address the targeted Timeline once, and then have a series
of actions execute on that clip; you don’t have to address the targeted Timeline
in each action.
Chapter 4102

You can also use the tellTarget action to perform multiple actions on the
same target.

To communicate between Timelines, you must do the following:

• Enter an instance name for the target movie clip.

To name a movie clip instance, use the Instance Panel (Window > Panels >
Instance). Timelines loaded into levels use their level number as an instance
name, for example, _level6.

• Enter the target path to the instance name in the Actions Panel.

You can enter the target path manually, or you can use the Insert Target Path
dialog box to target a movie clip. See “Specifying target paths” on page 108.

Note: During playback, a movie clip’s Timeline must be on the Stage to be targeted.
Working with Movie Clips 103

About absolute and relative target paths

A target path is the address of the Timeline you want to target. The display list of
Timelines in Flash is similar to the hierarchy of files and folders on a Web server.

The Movie Explorer shows the display list of movie clips in Authoring Mode.

Just as on a Web server, each Timeline in Flash can be addressed two ways: with an
absolute path or a relative path. The absolute path of an instance is always the
same, regardless of which Timeline calls the action; for example, the absolute path
to the instance california is always _level0.westCoast.california. A
relative path is different when called from different locations; for example, the
relative path to california from sanfrancisco is _parent, but from
portland, it’s _parent._parent.california.

Note: For more information about the Movie Explorer, see Using Flash.

An absolute path starts with the name of the level into which the movie is loaded
and continues through the display list until it reaches the target instance.

The first movie to be opened in the Flash Player is loaded at level 0. You must
assign each additional loaded movie a level number. The target name for a level is
_levelX where X is the level number into which the movie is loaded. For example,
the first movie opened in the Flash Player is called _level0, a movie loaded into
level 3 is called _level3.
Chapter 4104

In the following example, two movies have been loaded into the player,
TargetPaths.swf at level 0, and EastCoast.swf at level 5. The levels are
indicated in the Debugger, with level 0 indicated as _root.

The Debugger shows the absolute paths of all Timelines in the display list in
Test-Movie Mode.

An instance always has the same absolute path, whether it’s being called from an
action in an instance on the same level, or from an action on a different level. For
example, the instance bakersfield on level 0 always has the following absolute
path in dot syntax:

_level0.california.bakersfield

In slash syntax, the absolute path substitutes slashes for dots, as in the following:

_level0/california/bakersfield

To communicate between movies on different levels, you must use the level name
in the target path. For example, the portland instance would address the
atlanta instance as follows:

_level5.georgia.atlanta

In dot syntax, you can use the alias _root to refer to the main Timeline of the
current level. For the main Timeline, or _level0, the _root alias stands for
_level0 when targeted by a clip also on _level0. For a movie loaded into
_level5, _root is equal to _level5 when targeted by a movie clip also on level
1. For example, an action called from the instance southcarolina could use the
following absolute path to target the instance florida:

_root.eastCoast.florida

In slash syntax, you can use / to refer to the main Timeline of the current level, as
in the following:

/eastCoast/florida
Working with Movie Clips 105

In dot syntax in either Absolute or Relative Mode, you can use the same target
path rules to identify a variable on a Timeline or a property of an object. For
example, the following statement sets the variable name in the instance form to
the value "Gilbert":

_root.form.name = "Gilbert";

In slash syntax in either Absolute or Relative Mode, you can identify a variable on
a Timeline by preceding the variable name with a colon (:), as in the following:

/form:name = "Gilbert";

A relative path is dependent on the relationship between the controller Timeline
and the target Timeline. You can use a relative path to reuse actions because the
same action can target different Timelines depending on where the action is
placed. Relative paths can address targets only within their own level of the Flash
Player; they cannot address movies loaded into other levels. For example, you can’t
use a relative path in an action on _level0 that targets a Timeline on _level5.

In dot syntax, you can use the keyword this in a relative target path to refer to the
current Timeline. You can use the alias _parent in a relative target path to
indicate the parent Timeline of the current Timeline. The _parent alias can be
used repeatedly to go up one level in the movie clip hierarchy within the same
level of the Flash Player. For example, _parent._parent controls a movie clip up
two levels in the hierarchy.

In the following example, each city (charleston, atlanta, and staugustine) is
a child of a state instance and each state (southcarolina, georgia, and
florida) is a child of the eastCoast instance.

The Movie Explorer shows the parent-child relationships of movie clips.
Chapter 4106

An action on the Timeline of the instance charleston could use the following
target path to target the instance southcarolina:

_parent

To target the instance eastCoast from an action in charleston, you could use
the following relative path:

_parent._parent

In slash syntax, you can use two dots (..) to go up a level in the hierarchy.
To target eastCoast from an action in charleston, you could use the
following path:

../..

To target the instance atlanta from an action on the Timeline of charleston,
you could use the following relative path in dot syntax:

_parent._parent.georgia.atlanta

Relative paths are useful for reusing scripts. For example, you could attach a script
to a movie clip that magnifies the movie clip up one level by 150%, as follows:

onClipEvent (load) {
_parent._xscale = 150;
_parent._yscale = 150;

}

You could then reuse this script by placing it on the Timeline of any movie clip.

For more information on addressing and dot syntax, see “Writing Scripts with
ActionScript” on page 37.

For more information on Dot syntax and Slash syntax, see “Using ActionScript’s
syntax” on page 37.
Working with Movie Clips 107

Specifying target paths

To control a movie clip or loaded movie, you must use a target path to specify a
target. A movie clip must have an instance name to be targeted. You can specify a
target in several different ways:

• Enter a target path using the Insert Target Path button and dialog box in the
Actions panel.

• Enter the target path of the movie clip in your script manually.

• Create an expression by using a reference to a movie clip, or by using the
predefined functions targetPath and eval.

To insert a target path using the Insert Target Path dialog box:

1 Select the movie clip, frame, or button instance to which you want to
assign the action.

This will be the controller Timeline.

2 Choose Window > Actions to display the Actions panel.

3 In the Toolbox list, choose an action from the Actions category or a method
from the MovieClip category inside the Objects category.

4 Click the Target field or location in the script to insert the target path.

5 Click the Insert Target Path button in the bottom right corner of the Actions
panel to display the Insert Target Path dialog box.
Chapter 4108

6 In the Insert Target Path dialog box, choose a syntax: Dots (the default)
or Slashes.

7 Choose Absolute or Relative for the target path mode.

See “About absolute and relative target paths” on page 104.

8 Specify your target by doing one of the following:

• Select a movie clip in the Insert Target Path display list.

• Enter a target manually in the Target field using an absolute or relative path
and dot syntax.

9 Click OK.

To insert a target path manually:

Follow steps 1-4 above and enter an absolute or relative target path into the
Actions panel.
Working with Movie Clips 109

To use an expression as a target path:

1 Follow steps 1-4 above.

2 Do one of the following:

• Manually enter a reference as a target path. A reference is evaluated to
determine the target path. You can use a reference as a parameter for the with
action. In the following example, the variable index is evaluated and
multiplied by 2. The resulting value is used as the name of the movie clip
inside the Block instance that is told to play:

with (Board.Block[index*2]) {
play();

}

• In the Functions category of the Toolbox list, choose the targetPath function.

The targetPath function converts a reference to a movie clip into a string that
can be used by actions such as tellTarget.

In the following example, the targetPath function converts the reference
Board.Block[index*2+1] to a string:

tellTarget (targetPath (Board.Block[index*2+1])) {
play();

}

The previous example is equivalent to the following Slash syntax:

tellTarget ("Board/Block:" + index*2+1)) {
play();

}

• In the Functions category of the Toolbox list, choose the eval function.

The eval function converts a string into a reference to a movie clip that can be
used as a target path by actions such as with.

The following script evaluates the variable i, adds it to the string "cat"
and assigns the resulting value to the variable x . The variable x is now a
reference to a movie clip instance and can call the MovieClip object methods,
as in the following:

x = eval ("cat" + i);
x.play();

You can also use the eval function to call methods directly, as in the following:

eval ("cat" + i).play();.
Chapter 4110

Using actions and methods to
control Timelines
You can use certain actions and methods of the MovieClip object to target, or
perform tasks on, a movie clip or loaded level. For example, the setProperty
action sets a property (such as _width) of a Timeline to a value (such as 100).
Some MovieClip object methods duplicate the function of all the actions that
target Timelines. There are also additional methods, such as hitTest, and
swapDepths. Whether you use an action or a method, the target Timeline must be
loaded in the Flash Player when the action or method is called.

The following actions can target movie clips: loadMovie, unloadMovie,
setProperty, startDrag, duplicateMovieClip, and removeMovieClip. To use
these actions, you must enter a target path in the action’s Target parameter to
indicate the recipient of the action. Some of these actions can target movie clips or
levels and others can only target movie clips.

The following MovieClip object methods can control movie clips or loaded levels
and do not have equivalent actions: attachMovie, getBounds, getBytesLoaded,
getBytesTotal, globalToLocal, localToGlobal, hitTest, and swapDepths.

When an action and a method offer similar functions, you can choose to control
movie clips by using either one. The choice depends on your preference and
familiarity with writing scripts in ActionScript.

For more information about the methods of the MovieClip object and
for information about each action, see Chapter 7, “ActionScript Dictionary” on
page 157.
Working with Movie Clips 111

About methods versus actions

To use a methods, you invoke it by using the target path to the instance
name, followed by a dot, and then the method name and arguments, as in the
following statements:

myMovieClip.play();
parentClip.childClip.gotoAndPlay(3);

In the first statement, the play method causes the myMovieClip instance to play.
In the second statement, the gotoAndPlay method sends the playhead in
childClip (which is a child of the instance parentClip) to frame 3 and plays.

Actions that control a Timeline have a Target parameter that specifies the target
path. For example, in the following script the startDrag action targets the
customCursor instance and makes it draggable:

on(press){
startDrag("customCursor");

}

When you use a method, you call the method at the end of the target path. For
example, the following statement performs the same startDrag function:

customCursor.startDrag();

Statements written using the MovieClip object methods tend to be more brief
because they don’t require the tellTarget action. Use of the tellTarget action
is discouraged because it is not compatible with the ECMA-262 standard.

For example, to tell movie clip myMovieClip to start playing using the MovieClip
object methods, you would use the following code:

myMovieClip.play();

The following code produces the same results by using the tellTarget action:

tellTarget ("myMovieClip") {
play();

}

Chapter 4112

Using multiple methods or actions to target a Timeline

You can use the with action to address a targeted movie clip once, and then
execute a series of actions on that clip. The with action works on all ActionScript
objects (for example Array, Color, and Sound), not just movie clips. The
tellTarget action is similar to the with action. However, the tellTarget action
is not preferred because it does not work with all ActionScript objects and is not
ECMA-262 compliant.

The with action takes an object as a parameter. The object that you specify is
added to the end of the current target path. All actions nested inside a with action
are carried out inside the new target path, or scope. For example, in the following
script on the main Timeline, the with action is passed the object donut.hole to
change the properties of hole:

with (donut.hole){
_alpha = 20;
_xscale = 150;
_yscale = 150;

}

It is as if the statements inside the with action were called from the Timeline of the
hole instance.

In the following example, note the economy of using the with action and the
methods of the MovieClip object to issue several instructions:

with (myMovieClip) {
_x -= 10;
_y += 10;
gotoAndPlay(3);

}

For more information on the tellTarget action, see Using Flash.
Working with Movie Clips 113

Assigning an action or method

Actions and methods can be assigned to a button or frame in a Timeline, or to a
movie clip instance.

To assign an action or method to a movie clip instance you must use an
onClipEvent handler. All actions attached to the instance are nested inside an
onClipEvent handler and execute after it is triggered. The onClipEvent action is
triggered by either Timeline events (such as loading a movie) or user events (such
as a mouse click or keypress). For example, onClipEvent(mouseMove) triggers an
action every time the user moves the mouse.

The onClipEvent action is assigned to an instance on the Stage. The onClipEvent
events are listed in the Parameters pane in the Actions panel.
Chapter 4114

Loading and unloading additional movies

You can use the loadMovie action or method to play additional movies without
closing the Flash Player, or to switch movies without loading another HTML
page. You can also use loadMovie to send variables to a CGI script, which
generates a SWF file as its CGI output. When you load a movie, you can specify a
level or movie clip target into which the movie will load.

The unloadMovie action and method removes a movie previously loaded by
loadMovie. Explicitly unloading movies with unloadMovie ensures a smooth
transition between movies and can lighten the memory required by the Flash
Player. Use the loadMovie action to do any of the following:

• Play a sequence of banner ads that are SWF files by placing a loadMovie
action at the end of each SWF file to load the next movie

• Develope a branching interface that lets the user choose among several
different SWF files

• Build a navigation interface with navigation controls in level 0 that load other
levels. Loading levels produces smoother transitions than loading new HTML
pages in a browser.
Working with Movie Clips 115

Changing movie clip position and appearance

To change the properties of a movie clip as it plays, you can use the setProperty
action or write a statement that assigns a value to a property. If you load a movie
into a target, the loaded movie inherits the properties of the targeted movie clip.
Once the movie is loaded, you can change those properties.

Some properties, called read-only properties, have values that you can read but not
set. You can write statements to set any property that is not read-only. The
following statement sets the _alpha property of the movie clip instance wheel,
which is a child of the car instance:

car.wheel._alpha = 50;

In addition, you can write statements that get the value of a movie clip property.
For example, the following statement gets the value of the _xmouse property
on the main Timeline and sets the _x property of the customCursor instance
to that value:

onClipEvent(enterFrame){
customCursor._x = _root._xmouse;

}

You can also use the getProperty function to retrieve movie clip properties.

The _x, _y, _rotation, _xscale, _yscale, _height, _width, _alpha, and
_visible properties are affected by transformations on the movie clip’s parent,
and transform the movie clip and any of the clip’s children. The _focusrect,
_highquality, _quality, and _soundbuftime properties are global; they only
belong to the level 0 Timeline. All other properties belong to each movie clip or
loaded level. The table below lists all the movie clip properties:

Properties

_alpha _highquality _totalframes _xscale

_currentframe _name _url _y

_droptarget _quality _visible _ymouse

_focusrect _rotation _width _yscale

_framesloaded _soundbuftime _x

_height _target _xmouse
Chapter 4116

Dragging movie clips

You can use the startDrag action or method to make a movie clip draggable
while a movie is playing. For example, you can make a draggable movie clip for
games, drag-and-drop functions, customizable interfaces, scroll bars, and sliders.

A movie clip remains draggable until explicitly stopped by stopDrag, or until
another movie clip is targeted with startDrag. Only one movie clip can be
dragged at a time.

To create more complicated drag-and-drop behavior, you can evaluate the
_droptarget property of the movie clip being dragged. For example, you might
examine the _droptarget property to see if the movie was dragged to a specific
movie clip (such as a “trash can” movie clip), and then trigger another action. See
“Using "if" statements” on page 60 and “Using operators to manipulate values
in expressions” on page 51.

Duplicating and removing movie clips

You can create or remove movie clip instances as your movie is playing
using duplicateMovieClip or removeMovieClip, respectively. The
duplicateMovieClip action and method dynamically create a new instance
of the movie clip, assigning it a new instance name and giving it a depth.
A duplicated movie clip always starts at frame 1 even if the original movie
clip was on another frame when duplicated, and is always on top of all
predefined movie clips placed on the Timeline. Variables are not copied into
the duplicate movie clip.

To delete a movie clip you created with duplicateMovieClip, use
removeMovieClip. Duplicated movie clips also are removed if the parent
movie clip is deleted.
Working with Movie Clips 117

Attaching movie clips

You can retrieve a copy of a movie clip from a library and play it as part of your
movie using the attachMovie method. This method loads another movie clip
into your movie clip and plays it as the movie runs.

To use the attachMovie method, the movie clip being attached must be given a
unique name in the Symbol Linkage Properties dialog box.

To name a movie clip for sharing:

1 Select the movie clip in the movie’s Library that you want to attach.

2 In the Library window, choose Linkage from the Options menu.

3 For Linkage, choose Export This Symbol.

4 In the Symbol Linkage Properties dialog box, for Identifier, enter a name for
the movie clip. The name must differ from the symbol’s name in the library.

5 Click OK.

To attach a movie clip to another movie clip:

1 In the Actions panel, specify the target to which you want to attach a
movie clip.

2 In the Toolbox list, select the MovieClip object and then select the
attachMovie method.

3 Set the following arguments:

• For idName, specify the Identifier name that you entered in the Symbol
Linkage Properties dialog box.

• For newName, enter an instance name for the attached clip so that you will be
able to target it.

• For depth, enter the level at which the duplicate movie will be attached to the
movie clip. Each attached movie has its own stacking order, with level 0 as the
level of the originating movie. Attached movie clips are always on top of the
original movie clip.

For example:

myMovieClip.attachMovie("calif", "california", 10);
Chapter 4118

Creating smart clips
A “smart” clip is a movie clip with defined clip parameters that can be
changed. Those parameters are then passed to actions in the smart clip that
change the clip’s behavior.

To create a smart clip, you assign clip parameters to a movie clip symbol in the
Library. You can write ActionScript statements in the smart clip that operate on
the clip parameters, much like you use arguments in a function definition. You
can select a smart clip instance on the Stage and change the values of the
parameters in the Clip Parameters panel. During playback, the values set in the
panel are sent to the smart clip before any actions in the movie are executed.

Smart clips are useful for passing complicated Flash elements from a programmer
to a designer. The programmer can write actions in the smart clip with variables
that control the clip and the movie. A designer can then change the values of those
variables in the Clip Parameters panel without having to open the Actions panel.

You can use smart clips to create interface elements—such as radio buttons,
pop-up menus, tooltips, surveys, games, and avatars. Any movie clip that
you want to reuse in a different way without changing the scripts would be a
good smart clip.

In addition, you can create a custom interface in Flash for the Clip Parameters
panel to facilitate designers who are customizing the clip.

Defining clip parameters

Clip parameters are pieces of data that are passed to a movie clip when it loads in a
movie. You can define clip parameters when you are authoring your movie. You
can use these parameters in actions to change the appearance and behavior of the
smart clip while the movie is playing. A special icon in the Library window
indicates a movie clip with defined clip parameters.

Smart Clip icon
Working with Movie Clips 119

To define clip parameters for a movie clip:

1 Select a movie clip symbol in your movie’s library and do one of the following
to display the Clip Parameters dialog box:

• Right-click (Windows) or Control-click (Macintosh), and choose Define Clip
Parameters from the context menu.

• Choose Define Clip Parameters from the Options menu at the upper right of
the Library window.

2 Use the controls in the Clip Parameters dialog box as follows:

• Click the Add (+) button to add a new name/value pair or additional
parameters for a selected name/value pair.

• Click the Minus (-) button to delete a name/value pair.

• Use the arrow buttons to change the order of parameters in the list.

• Select a field by double-clicking it, and then enter a value.

3 For Name, enter a unique identifier for the parameter.
Chapter 4120

4 For Type, choose the kind of data the parameter will contain from the
pop-up menu:

• Select Default to use a string or number value.

• Select Array for a dynamic list of items that can grow or shrink.

• Select Object to declare several related elements with names and values, such as
a Point object with x and y elements.

• Select List to limit the selection to several choices, such as true or false or
Red, Green, or Blue.

5 For Value, select the default value that the parameter will contain from the
pop-up menu.

6 If you want to use a custom interface for the Clip Parameters panel, do one
of the following:

• Enter a relative path to the custom interface SWF file in the Link to
Custom UI field.

• Click the Link to Custom UI folder, and browse to the custom interface
SWF file.

See “Creating a custom interface” on page 123.

7 For Description, enter notes to that will appear in the Clip Parameters panel
that describe what each parameter does.

You can include any information in the Description that you want someone
who uses the smart clip to know. For example, an explanation of methods
you have defined.

8 Choose Lock in Instance to prevent users from renaming the parameters in the
Clip Parameters panel.

It is recommended that you leave the parameter names locked.

9 Click OK.
Working with Movie Clips 121

Setting clip parameters

You can write actions in the smart clip that use the defined parameters to change
the behavior of a smart clip. In a simple example, if you define a clip parameter
with the name Frame, you could write the following script on the smart clip that
uses the Frame parameter:

onClipEvent(load){
gotoAndStop(Frame);

}

You can then select the Smart Clip on the Stage and set the value for the Frame
parameter in the Clip Parameters panel to change which frame is played.

To set a smart clip’s clip parameters:

1 Select a smart clip instance on the Stage.

Smart clips are movie clips, so only the first frame will display in
authoring mode.

2 Choose Window > Panels > Clip Parameters to display the Clip
Parameters panel.

3 In the Clip Parameters panel, do one of the following:

• Double-click the Value field to select it and enter a value for each parameter.

If the parameter has been defined as a List, a pop-up menu will appear.

• If a custom interface has been defined, use the interface elements provided.

4 Choose Control > Test Movie to see the smart clip’s behavior change.
Chapter 4122

Creating a custom interface

A custom interface is a Flash movie that lets you enter values to be passed to
the smart clip. The custom interface replaces the interface of the Clip
Parameters panel.

The Clip Parameters panel with a custom interface movie.

The same smart clip without a custom interface in the Clip Parameters panel
Working with Movie Clips 123

Any values you enter using a custom interface are passed from the Clip Parameters
panel to the smart clip through an intermediary, or exchange, movie clip in the
custom interface. The exchange movie clip must have the instance name xch. If
a custom interface is selected in the Define Clip Parameters dialog box, the
smart clip instance passes the defined parameters to the xch movie clip and any
new values entered in the custom interface are copied to xch and passed back
to the smart clip.

You must place the xch clip on the main Timeline of the interface movie and xch
must always be loaded. The xch movie clip should contain only the values to be
passed to the Smart Clip. It should not contain any graphics, other movie clips, or
ActionScript statements; xch is merely a container through which values are
passed. You can transfer top-level objects, such as Arrays and Objects, through the
xch clip. However, you should not pass nested Arrays or Objects.

To create a custom interface for a Smart Clip:

1 Choose File > New to create a new Flash movie.

2 Choose Insert > New Symbol to create the exchange movie clip.

3 Create a new layer called “Exchange Clip”.

4 With the “Exchange Clip” layer selected, drag the exchange movie clip from the
Library window to the Stage in frame 1.

5 Select the exchange movie clip on the Stage, choose Window > Panels >
Instance, and enter the name xch.

6 Create the interface elements that the author will interact with to set the clip
parameters. For example, a pop-up menu, radio buttons, or drag-and-drop
menu items.

7 Use the set variable action to copy variable and object values to the
xch instance.

For example, if a button is used as an interface element, the button could have
an action that sets the value of the variable vertical and passes it to xch, as
in the following:

on (release){
_root.xch.vertical = true;

}

8 Export the movie as a SWF file.

To use custom interface SWF with a Smart Clip, you need to link them in the
Define Clip Parameters dialog box in the library that contains the Smart Clip. It’s
a good idea to save the SWF file in the same directory as the FLA containing the
Smart Clip. If you reuse the Smart Clip in another file or pass the Smart Clip to
another developer, the Smart Clip and the custom interface SWF must remain in
the same relative locations.
Chapter 4124

5

CHAPTER 5

. .. .
Integrating Flash with Web Applications

Flash movies can send information to and load information from remote files. To
send and load variables, you use the loadVariables or getURL action. To load a
Flash Player movie from a remote location, you use the loadMovie action. To
send and load XML data, you use the XML or XMLSocket object. You can
structure XML data using the predefined XML object methods.

You can also create Flash forms consisting of common interface elements, such
as text fields and pop-up menus, to collect data that will be sent to a server-side
application.

To extend Flash so that it can send and receive messages from the movie’s host
environment—for example, the Flash Player or a JavaScript function in a Web
browser—you can use fscommand and Flash Player methods.
125

Sending and loading variables to and from
a remote file
A Flash movie is a window for capturing and displaying information, much like
an HTML page. Flash movies, unlike HTML pages, can stay loaded in the
browser and continuously update with new information without having to
refresh. You can use Flash actions and object methods to send information to
and receive information from server-side scripts, text files, and XML files.

Server-side scripts can request specific information from a database and relay it
back and forth between the database and a Flash movie. Server-side scripts can be
written in many different languages: some of the most common are Perl, ASP
(Microsoft Active Server Pages), and PHP.

Storing information in a database and retrieving it allows you to create dynamic
and personalized content for your movie. For example, you could create a message
board, personal profiles for users, or a shopping cart that remembers what a user
has purchased so that it can determine the user’s preferences.

You can use several ActionScript actions and object methods to pass information
into and out of a movie. Each action and method uses a protocol to transfer
information. Each also requires information to be formatted in a certain way.

The following actions use HTTP or HTTPS protocol to send information in
URL encoded format: getURL, loadVariables, loadMovie.

The following methods use HTTP or HTTPS protocol to send information as
XML: XML.send, XML.load, XML.sendAndLoad.

The following methods create and use a TCP/IP socket connection to send
information as XML: XMLSocket.connect, XMLSocket.send.
Chapter 5126

About security

When playing a Flash movie in a Web browser, you can load data into the movie
only from a file that is on a server in the same subdomain. This prevents Flash
movies from being able to download information from other people’s servers.

To determine the subdomain of a URL consisting of one or two components, use
the entire domain:

To determine the subdomain of a URL consisting of more than two components,
remove the last level:

Domain Subdomain

http://macromedia macromedia

http://macromedia.com macromedia.com

Domain Subdomain

http://x.y.macromedia.com y.macromedia.com

http://www.macromedia.com macromedia.com
Integrating Flash with Web Applications 127

The following chart shows how the Flash Player determines whether or not to
permit an HTTP request:

When you use the XMLSocket object to create a socket connection with a server,
you must use a port numbered 1024 or higher. (Ports with lower numbers are
commonly used for Telnet, FTP, the World Wide Web, or Finger.)

Flash relies on standard browser and HTTP and HTTPS security features.
Essentially, Flash offers the same security that is available with standard HTML.
You should follow the same rules that you follow when building secure HTML
Web sites. For example, to support secure passwords in Flash, you need to
establish your password authentication with a request to a Web server.

To create a password, use a text field to request a password from the user. Submit
it to a sever in a loadVariables action or in an XML.sendAndLoad method
using an HTTPS URL with the POST method. The Web server can then verify
whether the password is valid. This way, the password will never be available in
the SWF file.

STAGE 1

No

Yes

STAGE 2

Yes

No

STAGE 3

Yes

No

STAGE 4

No

Yes

STAGE 5

Yes No

STAGE 1

Is this request for:
loadVariables,
xml.load,
xml.sendAndLoad,
or
xmlsocket.connect?

STAGE 2

Is the request for
a relative URL?

STAGE 3

Is the requesting
movie loaded from
a local disk?
(Its URL begins with
file: or res:)

STAGE 4

Does the URL being
requested start with
http://,
https:// or
ftp://?

STAGE 5

Does the domain name
of the requesting movie
match the domain name
of the requested URL?

Request
rejected

Request
permitted
Chapter 5128

Checking for loaded data

Each action and method that loads data into a movie (except XMLSocket.send) is
asynchronous; the results of the action are returned at an indeterminate time.

Before you can use loaded data in a movie, you must check to see if it has
been loaded. For example, you can’t load variables and manipulate the values
of those variables in the same script. In the following script, you can’t use the
variable lastFrameVisited until you’re sure the variable has loaded from the
file myData.txt:

loadVariables("myData.txt", 0);
gotoAndPlay(lastFrameVisited);

Each action and method has a specific technique you can use to check data it has
loaded. If you use the loadVariables or loadMovie actions you can load
information into a movie clip target and use the data event of the onClipEvent
action to execute a script. If you use the loadVariables action to load the data,
the onClipEvent(data) action executes when the last variable is loaded. If you
use the loadMovie action to load the data, the onClipEvent(data) action
executes each time a fragment of the movie is streamed into the Flash Player.

For example, the following button action loads the variables from the file
myData.txt into the movie clip loadTargetMC:

on(release){
loadVariables("myData.txt", _root.loadTargetMC);

}

An action assigned to the loadTargetMC instance uses the variable
lastFrameVisited, which is loaded from the file myData.txt. The following
action will execute only after all the variables, including lastFrameVisited,
are loaded:

onClipEvent(data) {
goToAndPlay(lastFrameVisited);

}

If you use the XML.load and XMLSocket.connect methods, you can define a
handler that will process the data when it arrives. A handler is a property of
the XML or XMLSocket object to which you assign a function that you have
defined. The handlers are called automatically when the information is
received. For the XML object, use XML.onLoad. For the XMLSocket object,
use XMLSocket.onConnect.

For more information, see “Using the XML object” on page 132 and “Using the
XMLSocket object” on page 135.
Integrating Flash with Web Applications 129

Using loadVariables, getURL, and loadMovie

The loadVariables, getURL, and loadMovie actions all communicate
with server-side scripts using the HTTP protocol. Each action sends all the
variables from the Timeline to which the action is attached; each action handles
its response as follows:

• getURL returns any information to a browser window, not into the
Flash Player.

• loadVariables loads variables into a specified Timeline in the Flash Player.

• loadMovie loads a movie into a specified level in the Flash Player.

When you use the loadVariables, getURL, or loadMovie actions, you can
specify several arguments:

• URL is the file in which the remote variables reside.

• Location is the level or target in the movie that receives the variables.

For more information about levels and targets, see “About multiple Timelines”
on page 98.

Note: The getURL action does not take this argument.

• Variables sets the HTTP method, either GET or POST, by which the variables
will be sent.

For example, if you wanted to track the high scores for a game, you could store the
scores on a server and use a loadVariables action to load them into the movie
each time someone played the game. The action might look something like this:

loadVariables("http://www.mySite.com/scripts/high_score.php",
_root.scoreClip, GET);

This loads variables from the PHP script called high_score.php into the movie
clip instance scoreClip using the GET HTTP method.

Any variables loaded with the loadVariables action must be in the standard
MIME format application/x-www-urlformencoded (a standard format used by
CGI scripts). The file that you specify in the URL argument of the
loadVariables action must write out the variable and value pairs in this format
so that Flash can read them.

The file can specify any number of variables; variable and value pairs must be
separated with an ampersand (&) and words within a value must be separated with
a plus (+). For example, this phrase defines several variables:

highScore1=54000&playerName1=rockin+good&highScore2=53455&playerN
ame2=bonehelmet&highScore3=42885&playerName3=soda+pop

For more information on loadVariables, getURL, and loadMovie, see their
entries in Chapter 7, “ActionScript Dictionary.”
Chapter 5130

About XML

XML (Extensible Markup Language) is becoming the standard for the interchange
of structured data in Internet applications. You can integrate data in Flash with
servers that use XML technology to build sophisticated applications, such as a
chat system or a brokerage system.

In XML, as with HTML, you can use tags to markup, or specify, a body of text. In
HTML, you can use predefined tags to indicate how text should appear in a Web
browser (for example, the tag indicates that text should be bold). In XML,
you define tags that identify the type of a piece of data (for example,
<password>VerySecret</password>). XML separates the structure of the
information from the way it’s displayed. This allows the same XML document to
be used and reused in different environments.

Every XML tag is called a node, or an element. Each node has a type (1–XML
element, or 3-text node) and elements may also have attributes. A node nested in
a node is called a child or a childNode. This hierarchical tree structure of nodes is
called the XML DOM (Document Object Model)—much like the JavaScript
DOM, which is the structure of elements in a Web browser.

In the following example, <PORTFOLIO> is the parent node; it has no attributes
and contains the childNode <HOLDING>, which has the attributes SYMBOL, QTY,
PRICE, and VALUE:

<PORTFOLIO>
<HOLDING SYMBOL="RICH"

QTY="75"
PRICE="245.50"
VALUE="18412.50" />

</PORTFOLIO>
Integrating Flash with Web Applications 131

Using the XML object

You can use the methods of the ActionScript XML object (for example,
appendChild, removeNode, and insertBefore) to structure XML data in Flash
to send to a server and to manipulate and interpret downloaded XML data.

You can use the following XML object methods to send and load XML data to a
server via the HTTP POST method:

• load downloads XML from a URL and places it in an ActionScript
XML object.

• send passes an XML object to a URL. Any returned information is sent to
another browser window.

• sendAndLoad sends an XML object to a URL. Any returned information is
placed in an ActionScript XML object.

For example, you could create a brokerage system for trading securities that stores
all its information (user names, passwords, session IDs, portfolio holdings, and
transaction information) in a database.

The server-side script that passes information between Flash and the database
reads and writes the data in XML format. You can use ActionScript to convert
information collected in the Flash movie (for example, a username and password)
to an XML object and then send the data to the server-side script as an XML
document. You can also use ActionScript to load the XML document that the
server returns into an XML object to be used in the movie.

The flow and conversion of data between a Flash Player movie, a server-side scripting
document, and a database

The password validation for the brokerage system requires two scripts: a function
defined on frame 1, and a script that creates and sends the XML objects attached
to the Submit button in the form.

XML document

username

XML document

Response

SQL request

password
Submit

loginReplyXML

Flash Player movie

Server-side script Database

Jean Smith

•••••••

loginXML
Chapter 5132

When users enter their information into text fields in the Flash movie with the
variables username and password, the variables must be converted to XML
before being passed to the server. The first section of the script loads the variables
into a newly created XML object called loginXML. When a user presses the
Submit button, the loginXML object is converted to a string of XML and
sent to the server.

The following script is attached to the Submit button. To understand the script,
read the commented lines of each script as indicated by the characters //:

on (release) {
// A. Construct a XML document with a LOGIN element
loginXML = new XML();
loginElement = loginXML.createElement("LOGIN");
loginElement.attributes.username = username;
loginElement.attributes.password = password;
loginXML.appendChild(loginElement);

// B. Construct a XML object to hold the server's reply
loginReplyXML = new XML();
loginReplyXML.onLoad = onLoginReply;

// C. Send the LOGIN element to the server,
// place the reply in loginReplyXML
loginXML.sendAndLoad("https://www.imexstocks.com/main.cgi",

loginReplyXML);
}

The first section of the script generates the following XML when the user presses
the SUBMIT button:

<LOGIN USERNAME="JeanSmith" PASSWORD="VerySecret" />

The server receives the XML, generates an XML response, and sends it back to the
Flash movie. If the password is accepted, the server responds with the following:

<LOGINREPLY STATUS="OK" SESSION="rnr6f7vkj2oe14m7jkkycilb" />

This XML includes a SESSION attribute which contains a unique, randomly
generated session ID, which will be used in all communications between the client
and server for the rest of the session. If the password is rejected, the server
responds with the following message:

<LOGINREPLY STATUS="FAILED" />

The LOGINREPLY XML node must load into a blank XML object in the Flash
movie. The following statement creates the XML object loginreplyXML to
receive the XML node:

// B. Construct an XML object to hold the server's reply
loginReplyXML = new XML();
loginReplyXML.onLoad = onLoginReply;

The second statement assigns the onLoginReply function to the
loginReplyXML.onLoad handler.
Integrating Flash with Web Applications 133

The LOGINREPLY XML element arrives asynchronously, much like the data from a
loadVariables action, and loads into the loginReplyXML object. When the data
arrives, the onLoad method of the loginReplyXML object is called. You must
define the onLoginReply function and assign it to the loginReplyXML.onLoad
handler so that it can process the LOGINREPLY element. The onLoginReply
function is assigned to the frame that contains the submit button.

The onLoginReply function is defined on the first frame of the movie.

The onLoginReply function is defined in the first frame of the movie. To
understand the script, read the commented lines of each script as indicated by
the characters //:

function onLoginReply() {
// Get the first XML element
var e = this.firstChild;
// If the first XML element is a LOGINREPLY element with
// status OK, go to the portfolio screen. Otherwise,
// go to the login failure screen and let the user try again.
if (e.nodeName == "LOGINREPLY" && e.attributes.status == "OK") {

// Save the session ID for future communications with server
sessionID = e.attributes.session;

// Go to the portfolio viewing screen
gotoAndStop("portfolioView");

} else {
// Login failed! Go to the login failure screen.
gotoAndStop("loginFailed");

}
}

The first line of this function, var e = this.firstChild, uses the keyword
this to refer to the XML object loginReplyXML that has just been loaded with
XML from the server. You can use this because onLoginReply has been invoked
as loginReplyXML.onLoad, so even though onLoginReply appears to be a plain
function, it actually behaves as a method of loginReplyXML.
Chapter 5134

To send the username and password as XML to the server and to load an XML
response back into the Flash movie, you can use the sendAndLoad method, as
in the following:

// C. Send the LOGIN element to the server,
// place the reply in loginReplyXML

loginXML.sendAndLoad("https://www.imexstocks.com/main.cgi",
loginReplyXML);

For more information about XML methods, see their entries in Chapter 7,
“ActionScript Dictionary.”

Note: This design is only an example, and we make no claims about the level of security it
provides. If you are implementing a secure password-protected system, make sure you
have a good understanding of network security.

Using the XMLSocket object

ActionScript provides a predefined XMLSocket object that allows you to open
a continuous connection with a server. A socket connection allows the server
to push information to the client as soon as that information is available.
Without a continuous connection, the server must wait for an HTTP request.
This open connection removes latency issues and is commonly used for real-time
applications such as chats. The data is sent over the socket connection as
one string and should be in XML format. You can use the XML object to
structure the data.

To create a socket connection, you must create a server-side application to wait for
the socket connection request and send a response to the Flash movie. This type of
server-side application can be written in a programming language such as Java.

You can use the ActionScript XMLSocket object’s connect and send methods to
transfer XML to and from a server over a socket connection. The connect
method establishes a socket connection with a Web server port. The send method
passes an XML object to the server specified in the socket connection.

When you invoke the XMLSocket object’s connect method, the Flash Player
opens a TCP/IP connection to the server and keeps that connection open until
one of the following happens:

• The close method of the XMLSocket object is called.

• No more references to the XMLSocket object exist.

• The Flash Player quits.

• The connection is broken (for example, the modem disconnects).
Integrating Flash with Web Applications 135

The following example creates an XML socket connection and sends data from
the XML object myXML. To understand the script, read the commented lines of
each script as indicated by the characters //:

//create a new XMLSocket object
sock = new XMLSocket();
//call its connect method to establish a connection with port 1024
//of the server at the URL
sock.connect("http://www.myserver.com", 1024);
//define a function to assign to the sock object that handles
//the servers response. If the connection succeeds, send the myXML
//object. If it fails, provide an error message in a text field.
function onSockConnect(success){

if (success){
sock.send(myXML);

} else {
msg="There has been an error connecting to "+serverName;

}
}
//assign the onSockConnect function to the onConnect property
sock.onConnect = onSockConnect;

For more information, see the entry for XMLSocket in Chapter 7,
“ActionScript Dictionary.”
Chapter 5136

Creating forms
Flash forms provide an advanced type of interactivity—a combination of buttons,
movies, and text fields that let you pass information to another application on a
local or remote server. All common form elements (such as radio buttons, drop-
down lists, and check boxes) can be created as movies or buttons with the look
and feel of your Web site’s overall design. The most common form element is an
input text field.

Common types of forms that use such interface elements include chat interfaces,
order forms, and search interfaces. For example, a Flash form can collect address
information and send it to another application that compiles the information into
an e-mail message or database file. Even a single text field is considered a form and
can be used to collect user input and display results.

Forms require two main components: the Flash interface elements that make up
the form and either a server-side application or client-side script to process the
information that the user enters. The following steps outline the general
procedure for creating a form in Flash.

To create a form:

1 Place interface elements in the movie using the layout you want.

You can use interface elements from the Buttons-Advanced common library or
create your own.

2 In the Text Options panel, set text fields to Input and assign each a unique
variable name.

For more information about creating editable text fields, see Using Flash.

3 Assign an action that either sends, loads, or sends and loads the data.
Integrating Flash with Web Applications 137

Creating a search form

An example of a simple form is a search field with a Submit button. As an
introduction to creating forms, the following example provides instructions for
creating a search interface using a getURL action. By entering the required
information, users can pass a keyword to a search engine on a remote Web server.

To create a simple search form:

1 Create a button for submitting the entered data.

2 Create a label, a blank text field, and an instance of the button on the Stage.

Your screen should look like this:

3 Select the text field and choose Window > Panels > Text Options.

4 In the Text Options panel, set the following options:

• Choose Input Text from the pop-up menu.

• Select Border/Bg.

• Specify a variable name.

Note: Individual search engines may require a specific variable name. Go to the search
engine’s Web site for details.

5 On the Stage, select the button and choose Window > Actions.

The Object Actions panel appears.

Note: A check next to Actions in the Window menu indicates the panel is open.

6 Drag the getURL action from the toolbox to the Script window.

7 In the Parameters pane, set the following options:

• For URL, enter the URL of the search engine.

• For Window, select _blank. This will open a new window that displays the
search results.

• For Variables, select Send Using GET.

8 To test the form, choose File > Publish Preview > HTML.
Chapter 5138

Using variables in forms

You can use variables in a form to store user input. To set variables, you use
editable text fields or assign actions to buttons in interface elements. For example,
each item in a pop-up menu is a button with an action that sets a variable to
indicate the selected item. You can assign a variable name to an input text field.
The text field acts like a window that displays the value of that variable.

When you pass information to and from a server-side script, the variables in the
Flash movie must match the variables in the script. For example, if the script
expects a variable called password, the text field into which users enter the
password should be given the variable name password.

Some scripts require hidden variables, which are variables that the user never sees.
To create a hidden variable in Flash, you can set a variable on a frame in the movie
clip that contains the other form elements. Hidden variables are sent to the server-
side script along with any other variables set on the Timeline that contains the
action that submits the form.

Verifying entered data

For a form that passes variables to an application on a Web server, you’ll want to
verify that users are entering proper information. For example, you don’t want
users to enter text in a phone number field. Use a series of set variable actions
in conjunction with for and if to evaluate entered data.

The following sample action checks to see whether the entered data is a number,
and that the number is in the format ###-###-####. If the data is valid, the
message “Good, this is a valid phone number!” is displayed. If the data is not
valid, the message “This phone number is invalid!” is displayed.
Integrating Flash with Web Applications 139

To use this script in a movie, create two text fields on the Stage and choose Input
in the Text Options panel for each. Assign the variable phoneNumber to one text
field and assign the variable message to the other. Attach the following action to a
button on the Stage next to the text fields:

on (release) {
valid = validPhoneNumber(phoneNumber);
if (valid) {

message = "Good, this is a valid phone number!";
} else {

message = "This phone number is invalid!";
}
function isdigit(ch) {

return ch.length == 1 && ch >= '0' && ch <= '9';
}
function validPhoneNumber(phoneNumber) {

if (phoneNumber.length != 12) {
return false;

}
for (var index = 0; index < 12; index++) {

var ch = phoneNumber.charAt(index);
if (index == 3 || index == 7) {

if (ch != "-") {
return false;
}

} else if (!isdigit(ch)) {
return false;

}
}
return true;

}
}

To send the data, create a button that has an action similar to the following:
(Replace the getURL arguments with arguments appropriate for your movie.)

on (release) {
if (valid) {

getURL("http://www.webserver.com", "_self", "GET");
}

}

For more information about these ActionScript statements, see set, for, and if
in Chapter 7, “ActionScript Dictionary” on page 157”.
Chapter 5140

Sending messages to and from the
Flash Player
To send messages from a Flash movie to its host environment (for example, a Web
browser, a Director movie, or the stand-alone Flash Player), you can use the
fscommand action. This allows you to extend your movie by using the
capabilities of the host. For example, you could pass an fscommand action to a
JavaScript function in an HTML page that opens a new browser window with
specific properties.

To control a movie in the Flash Player from Web browser scripting languages such
as JavaScript, VBScript, and Microsoft JScript, you can use Flash Player
methods—functions that send messages from a host environment to the Flash
movie. For example, you could have a link in an HTML page that sends your
Flash movie to a specific frame.

Using fscommand

Use the fscommand action to send a message to whichever program is hosting the
Flash Player. The fscommand action has two parameters: command and
arguments. To send a message to the stand-alone version of the Flash Player, you
must use predefined commands and arguments. For example, the following action
sets the stand-alone player to scale the movie to the full monitor screen size when
the button is released:

on(release){
fscommand("fullscreen", "true");

}

Integrating Flash with Web Applications 141

The following table shows the values you can specify for the command and
arguments parameters of the fscommand action to control a movie playing in the
stand-alone player (including projectors):

To use fscommand to send a message to a scripting language such as JavaScript in a
Web browser, you can pass any two arguments in the command and arguments
parameters. These arguments can be strings or expressions and will be used in a
JavaScript function that “catches,” or handles, the fscommand action.

An fscommand action invokes the JavaScript function moviename_DoFSCommand
in the HTML page that embeds the Flash movie, where moviename is the name of
the Flash Player as assigned by the NAME attribute of the EMBED tag or the ID
attribute of the OBJECT tag. If the Flash Player is assigned the name myMovie, the
JavaScript function invoked is myMovie_DoFSCommand.

Command Arguments Purpose

quit None Closes the projector.

fullscreen true or false Specifying true sets the Flash Player to full-
screen mode. Specifying false returns the player
to normal menu view.

allowscale true or false Specifying false sets the player so that the movie
is always drawn at its original size and never scaled.
Specifying true forces the movie to scale to
100% of the player.

showmenu true or false Specifying true enables the full set of context
menu items. Specifying false dims all the context
menu items except About Flash Player.

exec Path to
application

Executes an application from within the projector.
Chapter 5142

To use the fscommand action to open a message box from a Flash movie in the
HTML page through JavaScript:

1 In the HTML page that embeds the Flash movie, add the following
JavaScript code:

function theMovie_DoFSCommand(command, args) {
if (command == "messagebox") {

alert(args);
}

}

If you publish your movie using the Flash with FSCommand template in the
HTML Publish Settings, this code is inserted automatically. The movie’s NAME
and ID attributes will be the file name. For example, for the file myMovie.fla,
the attributes would be set to myMovie. For more information about
publishing, see Using Flash.

2 In the Flash movie, add the fscommand action to a button:

fscommand("messagebox", "This is a message box invoked from
within Flash.")

You can also use expressions for the fscommand action and arguments, as in the
following example:

fscommand("messagebox", "Hello, " & name & ", welcome to our
Web site!")

3 Choose File > Publish Preview > HTML to test the movie.

The fscommand action can send messages to Macromedia Director that are
interpreted by Lingo as strings, events, or executable Lingo code. If the message is
a string or an event, you must write the Lingo code to receive it from the
fscommand action and carry out an action in Director. For more information, see
theDirector Support Center at http://www.macromedia.com/support/director.

In Visual Basic, Visual C++, and other programs that can host ActiveX
controls, fscommand sends a VB event with two strings that can be handled in
the environment’s programming language. For more information, use the
keywords Flash method to search theFlash Support Center at http://
www.macromedia.com/support/flash.
Integrating Flash with Web Applications 143

About Flash Player methods

You can use Flash Player methods to control a movie in the Flash Player from Web
browser scripting languages such as JavaScript and VBScript. As with other
methods, you can use Flash Player methods to send calls to Flash Player movies
from a scripting environment other than ActionScript. Each method has a name,
and most methods take arguments. An argument specifies a value that the method
operates upon. The calculation performed by some methods returns a value that
can be used by the scripting environment.

There are two different technologies that enable communication between the
browser and the Flash Player: LiveConnect (Netscape Navigator 3.0 or later on
Windows 95/98/2000/NT or Power Macintosh) and ActiveX (Microsoft Internet
Explorer 3.0 and later on Windows 95/98/2000/NT). Although the techniques
for scripting are similar for all browsers and languages, there are additional
properties and events available for use with ActiveX controls.

For more information, including a complete list of the Flash Player scripting
methods, use the keywords Flash method to search theFlash Support Center at
http://www.macromedia.com/support/flash.
Chapter 5144

6

CHAPTER 6

. .. .
Troubleshooting ActionScript

The level of sophistication of some actions, especially in combination with one
another, can create complexity in Flash movies. As with any programming
language, you can write incorrect ActionScript that causes errors in your scripts.
Using good authoring techniques makes it easier to troubleshoot your movie
when something behaves unexpectedly.

Flash has several tools to help you test your movies in Test-Movie Mode or in
a Web browser. The Debugger shows a hierarchical display list of movie clips
currently loaded in the Flash Player. It also allows you to display and modify
variable values as the movie plays. In Test-Movie Mode, the Output window
displays error messages and lists of variables and objects. You can also use the
trace action in your scripts to send programming notes and values of expressions
to the Output window.

Authoring and troubleshooting guidelines
If you use good authoring practices when you write scripts, your movies will have
fewer bugs (programming errors). You can use the following guidelines to help
prevent problems and to fix them quickly when they do occur.
145

Using good authoring practices

It’s a good idea to save multiple versions of your movie as you work. Choose File >
Save As to save a version with a different name every half hour. You can use your
version history to locate when a problem began by finding the most recent file
without the problem. Using this approach, you’ll always have a functioning
version, even if one file gets corrupted.

Another important authoring practice is to test early, test often, and test on all
target platforms to find problems as soon as they develop. Choose Control > Test
Movie to run your movie in test-movie mode whenever you make a significant
change or before saving a version. In test-movie mode, the movie runs in a version
of the stand-alone player.

If your target audience will be viewing the movie on the Web, it’s important to
test the movie in a browser as well. In certain situations (for example, if you’re
developing an intranet site) you may know the browser and platform of your
target audience. If you’re developing for a Web site, however, test your movie in
all browsers on all potential platforms.

It’s a good idea to follow these authoring practices:

• Use the trace action to send comments to the Output window. See “Using
trace” on page 156.

• Use the comment action to include instructional notes that appear only in the
Actions panel. See “Comments” on page 41.

• Use consistent naming conventions to identify elements in a script. For
example, it’s a good idea to avoid spaces in names. Start variable and function
names with a lowercase letter and use a capital letter for each new word
(myVariableName, myFunctionName). Start constructor function names with a
capital letter (MyConstructorFunction). It’s most important to pick a style
that makes sense to you and use it consistently.

• Use meaningful variable names that reflect what kind of information a variable
contains. For example, a variable containing information about the last button
pressed could be called lastButtonPressed. A name like foo would make it
difficult to remember what the variable contains.

• Use editable text fields in guide layers to track variable values as an alternative
to using the Debugger.

• Use the Movie Explorer in Edit-Movie Mode to view the display list and view
all actions in a movie. See Flash Help.

• Use the for...in action to loop through the properties of movie clips,
including child movie clips. You can use the for...in action with the trace
action to send a list of properties to the Output window. See “Repeating an
action” on page 61.
Chapter 6146

Using a troubleshooting checklist

As with every scripting environment, there are certain mistakes that scripters
commonly make. The following list is a good place to start troubleshooting
your movie:

• Make sure you’re in test-movie mode.

Only simple button and frame actions (for example, gotoAndPlay, and stop)
will work in authoring mode. Choose Control > Enable Simple Frame Actions
or choose Control > Enable Simple Buttons to enable these actions.

• Make sure you do not have frame actions on multiple layers that conflict
with each other.

• If you’re working with the Actions panel in Normal Mode, make sure your
statement is set to expression.

If you are passing an expression in an action and haven’t selected the Expression
box, the value will be passed as a string. See “Using operators to manipulate
values in expressions” on page 51.

• Make sure multiple ActionScript elements do not have the same name.

It’s a good idea to give every variable, function, object, and property a
unique name. Local variables are exceptions, though: they only need to be
unique within their scope and are often reused as counters. See “Scoping a
variable” on page 48.

For more tips on troubleshooting a Flash movie, see the Flash Support Center at
http://www.macromedia.com/support/flash.
Troubleshooting ActionScript 147

Using the Debugger
The Debugger allows you to find errors in a movie as it’s running in the Flash
Player. You can view the display list of movie clips and loaded movies and
change the values of variables and properties to determine correct values. You can
then go back to your scripts and edit them so that they produce the correct results.
To use the Debugger, you must run the Flash Debug Player, a special version of
the Flash Player.

The Flash Debug Player installs automatically with the Flash 5 authoring
application. It allows you to download the display list, variable name and
value pairs, and property name and value pairs to the Debugger in the Flash
authoring application.

To display the Debugger:

Choose Window > Debugger.

This opens the Debugger in an inactive state. No information appears in the
display list until a command is issued from the Flash Player.

To activate the Debugger in test-movie mode:

Choose Control > Debug Movie.

This opens the Debugger in an active state.

Display list

Properties tab

Variables tab

Watch list

Status bar
Chapter 6148

Enabling debugging in a movie

When exporting a Flash Player movie, you can choose to enable debugging in
your movie and create a debugging password. If you don’t enable debugging, the
Debugger will not activate.

As in JavaScript or HTML, any client-side ActionScript variables can potentially
be viewed by the user. To store variables securely, you must send them to a server-
side application instead of storing them in the movie.

However, as a Flash developer, you may have other trade secrets, such as movie
clip structures, that you do not want revealed. To ensure that only trusted users
can watch your movies with the Flash Debug Player, you can publish your movie
with a Debugger password.

To enable debugging and create a password:

1 Choose File > Publish Settings.

2 Click the Flash tab.

3 Select Debugging Permitted.

4 To set a password, enter a password into the Password box.

Without this password, you cannot download information to the Debugger.
If you leave the password field blank, no password is required.

To activate the Debugger in a Web browser:

1 Right-click (Windows) or Control-click (Macintosh) to open the Flash Debug
Player context menu.

2 Choose Debugger.

Note: You can use the Debugger to monitor only one movie at a time. To use the Debugger,
Flash must be open.

Flash Debug Player context menu
Troubleshooting ActionScript 149

About the status bar

Once activated, the Debugger status bar displays the URL or local file path of the
movie. The Flash Player is implemented in different forms depending on the
playback environment. The Debugger status bar displays the type of Flash Player
running the movie:

• Test-movie mode

• Stand-alone player

• Netscape plug-in

The Netscape plug-in is used with Netscape Navigator on Windows and
Macintosh and in Microsoft Internet Explorer on Macintosh.

• ActiveX control

The ActiveX control is used with Internet Explorer on Windows.

About the display list

When the Debugger is active, it shows a live view of the movie clip display list.
You can expand and collapse branches to view all movie clips currently on the
Stage. When movie clips are added to or removed from the movie, the display list
reflects the changes immediately. You can resize the display list by moving the
horizontal splitter or by dragging from the bottom right corner.

Displaying and modifying variables

The Variables tab in the Debugger displays the names and values of any variables
in the movie. If you change the value of a variable in the Variables tab, you can see
the change reflected in the movie while it runs. For example, to test collision
detection in a game, you could enter the variable value to position a ball in the
correct location next to a wall.
Chapter 6150

To display a variable:

1 Select the movie clip containing the variable from the display list.

2 Click the Variables tab.

The display list updates automatically as the movie plays. If a movie clip is
removed from the movie at a specific frame, that movie clip is also removed from
the display list in the Debugger; this removes the variable name and value.

To modify a variable value:

Select the value and enter a new value.

The value must be a constant value (for example, "Hello", 3523, or "http://
www.macromedia.com"), not an expression (for example, x + 2, or
eval("name:" +i)). The value can be a string (any value surrounded by
quotation marks ("")), a number, or a Boolean (true or false).

Object and Array variables are displayed in the Variables tab. Click on the Add (+)
button to see their properties and values. However, you can’t enter Object or
Array values (for example, {name: "I am an object"} or [1, 2, 3]) in
the values fields.

Note: To output the value of an expression in test-movie mode, use the trace action. See
“Using trace” on page 156.
Troubleshooting ActionScript 151

Using the Watch list

To monitor a set of critical variables in a manageable way, you can mark variables
to appear in the Watch list. The Watch list displays the absolute path to the
variable and the value. You can also enter a new variable value in the Watch list.

Only variables can be added to the Watch list, not properties or functions.

Variables marked for the Watch list and variables in the Watch list

To add variables to the Watch list, do one of the following:

• In the Variables tab, right-click (Windows) or Control-click (Macintosh) a
selected variable and choose Watch from the context menu. A blue dot appears
next to the variable.

• In the Watch tab, right-click (Windows) or Control-click (Macintosh)
and choose Add from the context menu. Enter the variable name and value
in the fields.

To remove variables from the Watch list:

In the Watch tab, right-click (Windows) or Control-click (Macintosh) and choose
Remove from the context menu.
Chapter 6152

Displaying movie properties and changing editable properties

The Debugger Properties tab displays all the property values of any movie clip
on the Stage. You can change the value of a property and see the change
reflected in the movie while it runs. Some movie clip properties are read-only
and cannot be changed.

To display a movie clip’s properties:

1 Select a movie clip from the display list.

2 Click the Properties tab.

The Properties tab in the Debugger

To modify a property value:

Select the value and enter a new value.

The value must be a constant (for example, 50, or "clearwater") rather than
an expression (for example, x + 50). The value can be a string (any value
surrounded by quotation marks ("")), a number, or a Boolean (true or false).
You can’t enter object or array values (for example, {id: "rogue"} or [1, 2, 3])
in the Debugger.

For more information, see “String” on page 43 and “Using operators to
manipulate values in expressions” on page 51.

Note: To output the value of an expression in test-movie mode, use the trace action.
See “Using trace” on page 156.
Troubleshooting ActionScript 153

Using the Output window
In test-movie mode, the Output window displays information to help you
troubleshoot your movie. Some information, such as syntax errors, is displayed
automatically. You can display other information by using the List Objects and
List Variables commands. See “Using List Objects” on page 155 and “Using List
Variables” on page 155.

If you use the trace action in your scripts, you can send specific information to
the Output window as the movie runs. This could include notes about the movie’s
status or the value of an expression. See “Using trace” on page 156.

To display the Output window:

1 If your movie is not running in test-movie mode, choose Control > Test Movie.

2 Choose Window > Output.

The Output window appears.

Note: If there are syntax errors in a script, the Output window appears automatically.

3 To work with the contents of the Output window, use the Options menu:

• Choose Options > Copy to copy the contents of the Output window to the
Clipboard.

• Choose Options > Clear to clear the window contents.

• Choose Options > Save to File to save the window contents to a text file.

• Choose Options > Print to print the window contents.
Chapter 6154

Using List Objects

In test-movie mode, the List Objects command displays the level, frame, object
type (shape, movie clip, or button) and target path of a movie clip instance in a
hierarchical list. This is especially useful for finding the correct target path and
instance name. Unlike the Debugger, the list does not update automatically as the
movie plays; you must choose the List Objects command each time you want to
send the information to the Output window.

To display a list of objects in a movie:

1 If your movie is not running in test-movie mode, choose Control > Test Movie.

2 Choose Debug > List Objects.

A list of all the objects currently on the Stage is displayed in the Output window,
as in this example:

Layer #0: Frame=3
Movie Clip: Frame=1 Target=_root.MC

Shape:
Movie Clip: Frame=1 Target=_root.instance3

Shape:
Button:

Movie Clip: Frame=1 Target=_root.instance3.instance2
Shape:

Note: The List Objects command does not list all ActionScript data objects. In this context,
an object is considered to be a shape or symbol on the Stage.

Using List Variables

In test-movie mode, the List Variables command displays a list of all the variables
currently in the movie. This is especially useful for finding the correct variable
target path and variable name. Unlike in the Debugger, the list does not update
automatically as the movie plays; you must choose the List Variables command
each time you want to send the information to the Output window.

To display a list of variable in a movie:

1 If your movie is not running in test-movie mode, choose Control > Test Movie.

2 Choose Debug > List Variables.

A list of all the variables currently in the movie is displayed in the Output window,
as in this example:

Level #0:
Variable _root.country = "Sweden"
Variable _root.city = "San Francisco"

Movie Clip: Target=""
Variable _root.instance1.firstName = "Rick"
Troubleshooting ActionScript 155

Using trace

When you use the trace action in a script, you can send information to the
Output window. For example, while testing a movie or scene, you can send
specific programming notes to the window or have specific results appear when a
button is pressed or a frame is played. The trace action is similar to the JavaScript
alert statement.

When you use the trace action in a script, you can use expressions as arguments.
The value of an expression is displayed in the Output window in test-movie
mode, as in the following:

onClipEvent(enterFrame){
trace("onClipEvent enterFrame " + enterFrame++)

}

The trace action returns values that are displayed in the Output window.
Chapter 6156

7

CHAPTER 7

. .. .
ActionScript Dictionary

This portion of the ActionScript Reference Guide describes the syntax and use of
ActionScript elements in Flash 5 and later versions. The entries in this guide are
the same as those in ActionScript Dictionary Help. To use examples in a script,
copy the example text from ActionScript Dictionary Help and paste it in the
Actions panel in Expert Mode.

The dictionary lists all ActionScript elements—operators, keywords, statements,
actions, properties, functions, objects, and methods. For an overview of all
dictionary entries, see Contents of the dictionary; the tables in this section are a
good starting point for looking up symbolic operators or methods whose object
class you don’t know.

ActionScript follows the ECMA-262 standard (the specification written by the
European Computer Manufacturers Association) unless otherwise noted.

There are two types of entries in this dictionary:

• Individual entries for operators, keywords, functions, variables, properties,
methods, and statements

• Object entries, which provide general detail about predefined objects

Use the information in the sample entries to interpret the structure and
conventions used in these two types of entries.
157

Sample entry for most ActionScript
elements
The following sample dictionary entry explains the conventions used for all
ActionScript elements that are not objects.

Entry title

All entries are listed alphabetically. The alphabetization ignores capitalization,
leading underscores, and so on.

Syntax

The “Syntax” section provides correct syntax for using the ActionScript element in
your code. The code portion of the syntax is in code font, and the arguments
you must provide are in italicized code font. Brackets indicate optional
arguments.

Arguments

This section describes any arguments listed in the syntax.

Description

This section identifies the element (for example, as an operator, method, function,
or other element) and then describes how the element is used.

Player

This section tells which versions of the Player support the element. This is not the
same as the version of Flash used to author content. For example, if you are
creating content for the Flash 4 Player using the Flash 5 authoring tool, you
cannot use ActionScript elements that are only available to the Flash 5 Player.

With the introduction of Flash 5 ActionScript, some Flash 4 (and earlier)
ActionScript elements have been deprecated. Although deprecated elements are
still supported by the Flash 5 Player, it is recommended that you use the new
Flash 5 elements.

In addition, operator functionality has been greatly expanded in Flash 5. Not only
have many new mathematical operators been introduced, but some of the older
operators are now capable of handling additional data types. To maintain data
type consistency, Flash 4 files are automatically modified when imported into the
Flash 5 authoring environment, but these modifications will not affect the
functionality of the original script. For more information, see the entries for +
(addition), < (less than), > (greater than), <= (less than or equal to), >= (greater
than or equal to), != (inequality), and = (equality).

Example

This section provides a code sample demonstrating how to use the element.

See also

This section lists related ActionScript dictionary entries.
Chapter 7158

Sample entry for objects
The following sample dictionary entry explains the conventions used for
predefined ActionScript objects. Objects are listed alphabetically with all other
elements in the dictionary.

Entry title

The entry title provides the name of the object. The object name is followed by a
paragraph containing general information about the object.

Method and property summary tables

Each object entry contains a table listing all of the methods associated with
the object. If the object has properties (often constants), these elements are
summarized in an additional table. All of the methods and properties listed in
these tables also have their own dictionary entries, which follow the object entry.

Constructor

If the object requires you to use a constructor to access its methods and
properties, the constructor is described at the end of the object entry. This
description has all of the standard elements (syntax description, and so on)
of other dictionary entries.

Method and property listings

The methods and properties of an object are listed alphabetically after the
object entry.
ActionScript Dictionary 159

Contents of the dictionary
All dictionary entries are listed alphabetically. However, some operators are
symbols, and are presented in ASCII order. In addition, methods that are
associated with an object are listed along with the object’s name—for example,
the abs method of the Math object is listed as Math.abs.

The following two tables will help you locate these elements. The first table lists
the symbolic operators in the order in which they occur in the dictionary. The
second table lists all other ActionScript elements.

Note: For precedence and associativity of operators, see Appendix A.

Symbolic operators

–– (decrement)

++ (increment)

! (logical NOT)

!= (inequality)

% (modulo)

%= (modulo assignment)

& (bitwise AND)

&& (short-circuit AND)

&= (bitwise AND assignment)

() (parentheses)

 – (minus)

* (multiplication)

*= (multiplication assignment)

, (comma)

. (dot)

? : (conditional)

/ (division)

// (comment delimiter)

/* (comment delimiter)

/= (division assignment)

[] (array access)
Chapter 7160

^ (bitwise XOR)

^= (bitwise XOR assignment)

{} (object initializer)

| (bitwise OR)

|| (logical OR)

|= (bitwise OR assignment)

~ (bitwise NOT)

+ (addition)

+= (addition assignment)

< (less than)

<< (bitwise left shift)

<<= (bitwise left shift and assignment)

<= (less than or equal to)

<> (inequality)

= (assignment)

-= (negation assignment)

== (equality)

> (greater than)

>= (greater than or equal to)

>> (bitwise right shift)

>>= (bitwise right shift and assignment)

>>> (bitwise unsigned right shift)

>>>= (bitwise unsigned right shift and assignment)

Symbolic operators
ActionScript Dictionary 161

The following table lists all ActionScript elements that are not symbolic operators.

ActionScript element See entry

abs Math.abs

acos Math.acos

add add

and and

_alpha _alpha

appendChild XML.appendChild

Array Array (object)

asin Math.asin

atan Math.atan

atan2 Math.atan2

attachMovie MovieClip.attachMovie

attachSound Sound.attachSound

attributes XML.attributes

BACKSPACE Key.BACKSPACE

Boolean Boolean (function), Boolean (object)

break break

call call

CAPSLOCK Key.CAPSLOCK

ceil Math.ceil

charAt String.charAt

charCodeAt String.charCodeAt

childNodes XML.childNodes

chr chr

cloneNode XML.cloneNode

close XMLSocket.close

Color Color (object)

concat Array.concat, String.concat
Chapter 7162

connect XMLSocket.connect

constructor Array, Boolean, Color, Date, Number, Object, Sound,
String, XML, XMLSocket

continue continue

CONTROL Key.CONTROL

cos Math.cos

createElement XML.createElement

createTextNode XML.createTextNode

_currentframe _currentframe

Date Date (object)

delete delete

DELETEKEY Key.DELETEKEY

docTypeDecl XML.docTypeDecl

do...while do...while

DOWN Key.DOWN

_droptarget _droptarget

duplicateMovieClip duplicateMovieClip, MovieClip.duplicateMovieClip

E Math.E

else else

END Key.END

ENTER Key.ENTER

eq eq (equal—string specific)

escape (function) escape

ESCAPE (constant) Key.ESCAPE

eval eval

evaluate evaluate

exp Math.exp

firstChild XML.firstChild

floor Math.floor

ActionScript element See entry
ActionScript Dictionary 163

_focusrect _focusrect

for for

for.. in for..in

_framesloaded _framesloaded

fromCharCode String.fromCharCode

fscommand fscommand

function function

ge ge (greater than or equal to—string specific)

getAscii Key.getAscii

getBeginIndex Selection.getBeginIndex

getBounds MovieClip.getBounds

getBytesLoaded MovieClip.getBytesLoaded

getBytesTotal MovieClip.getBytesTotal

getCaretIndex Selection.getCaretIndex

getCode Key.getCode

getDate Date.getDate

getDay Date.getDay

getEndIndex Selection.getEndIndex

getFocus Selection.getFocus

getFullYear Date.getFullYear

getHours Date.getHours

getMilliseconds Date.getMilliseconds

getMinutes Date.getMinutes

getMonth Date.getMonth

getPan Sound.getPan

getProperty getProperty

getRGB Color.setRGB

getSeconds Date.getSeconds

ActionScript element See entry
Chapter 7164

getTime Date.getTime

getTimer getTimer

getTimezoneOffset Date.getTimezoneOffset

getTransform Color.getTransform, Sound.getTransform

getURL getURL, MovieClip.getURL

getUTCDate Date.getUTCDate

getUTCDay Date.getUTCDay

getUTCFullYear Date.getUTCFullYear

getUTCHours Date.getUTCHours

getUTCMilliseconds Date.getUTCMilliseconds

getUTCMinutes Date.getUTCMinutes

getUTCMonth Date.getUTCMonth

getUTCSeconds Date.getUTCSeconds

getVersion getVersion

getVolume Sound.getVolume

getYear Date.getYear

globalToLocal MovieClip.globalToLocal

gotoAndPlay gotoAndPlay, MovieClip.gotoAndPlay

gotoAndStop gotoAndStop, MovieClip.gotoAndStop

gt gt (greater than —string specific)

hasChildNodes XML.haschildNodes

_height _height

hide Mouse.hide

_highquality _highquality

hitTest MovieClip.hitTest

HOME Key.HOME

if if

ifFrameLoaded ifFrameLoaded

ActionScript element See entry
ActionScript Dictionary 165

#include #include

indexOf String.indexOf

Infinity Infinity

INSERT Key.INSERT

insertBefore XML.insertBefore

int int

isDown Key.isDown

isFinite isFinite

isNaN isNaN

isToggled Key.isToggled

join Array.join

Key Key (object)

lastChild XML.lastChild

lastIndexOf String.indexOf

le le (less than or equal to — string specific)

LEFT Key.LEFT

length length, Array.length, String.length

 LN2 Math.LN2

 LN10 Math.LN10

load XML.load

loaded XML.loaded

loadMovie loadMovie, MovieClip.loadMovie

loadVariables loadVariables, MovieClip.loadVariables

localToGlobal MovieClip.localToGlobal

log Math.log

LOG2E Math.LOG2E

 LOG10E Math.LOG10E

lt le (less than or equal to — string specific)

ActionScript element See entry
Chapter 7166

Math Math (object)

max Math.max

maxscroll maxscroll

MAX_VALUE Number.MAX_VALUE

mbchr mbchr

mblength mblength

mbord mbord

mbsubstring mbsubstring

min Math.min

MIN_VALUE Number.MIN_VALUE

Mouse Mouse (object)

MovieClip MovieClip (object)

_name _name

NaN NaN, Number.NaN

ne ne (not equal — string specific)

NEGATIVE_INFINITY Number.NEGATIVE_INFINITY

new (operator) new

newline newline

nextFrame nextFrame, MovieClip.nextFrame

nextScene nextScene

nextSibling XML.nextSibling

nodeName XML.nodeName

nodeType XML.nodeType

nodeValue XML.nodeValue

not not

null null

Number Number (function), Number (object)

Object Object (object)

ActionScript element See entry
ActionScript Dictionary 167

On on(mouseEvent)

onClipEvent onClipEvent

onClose XMLSocket.onClose

onConnect XMLSocket.onConnect

OnLoad XML.onLoad

onXML XMLSocket.onXML

or (logical OR) or

ord ord

_parent _parent

parentNode XML.parentNode

parseFloat parseFloat

parseInt parseInt

parseXML XML.parseXML

PGDN Key.PGDN

PGUP Key.PGUP

PI Math.PI

play play, MovieClip.play

pop Array.pop

POSITIVE_INFINITY Number.POSITIVE_INFINITY

pow Math.pow

prevFrame prevFrame, MovieClip.prevFrame

previousSibling XML.previousSibling

prevScene prevScene

print print

printAsBitmap printAsBitmap

push Array.push

_quality _quality

random random, Math.random

ActionScript element See entry
Chapter 7168

removeMovieClip removeMovieClip, MovieClip.removeMovieClip

removeNode XML.removeNode

return return

reverse Array.reverse

RIGHT Key.RIGHT

_root _root

_rotation _rotation

round Math.round

scroll scroll

Selection Selection (object)

send XML.send, XMLSocket.send

sendAndLoad XML.sendAndLoad

set set

setDate Date.setDate

setFocus Selection.setFocus

setFullYear Date.setFullYear

setHours Date.setHours

setMilliseconds Date.setMilliseconds

setMinutes Date.setMinutes

setMonth Date.setMonth

setPan Sound.setPan

setProperty setProperty

setRGB Color.setRGB

setSeconds Date.setSeconds

setSelection Selection.setSelection

setTime Date.setTime

setTransform Color.setTransform,Sound.setTransform

setUTCDate Date.setUTCDate

ActionScript element See entry
ActionScript Dictionary 169

setUTCFullYear Date.setUTCFullYear

setUTCHours Date.setUTCHours

setUTCMilliseconds Date.setUTCMilliseconds

setUTCMinutes Date.setUTCMinutes

setUTCMonth Date.setUTCMonth

setUTCSeconds Date.setUTCSeconds

setVolume Sound.setVolume

setYear Date.setYear

shift (method) Array.shift

SHIFT (constant) Key.SHIFT

show Mouse.show

sin Math.sin

slice Array.slice, String.slice

sort Array.sort

Sound Sound (object)

_soundbuftime _soundbuftime

SPACE Key.SPACE

splice Array.splice

split String.split

sqrt Math.sqrt

SQRT1_2 Math.SQRT1_2

SQRT2 Math.SQRT2

start Sound.start

startDrag startDrag, MovieClip.startDrag

status XML.status

stop stop,MovieClip.stop,Sound.stop

stopAllSounds stopAllSounds

stopDrag stopDrag, MovieClip.stopDrag

ActionScript element See entry
Chapter 7170

String String (function), String (object)," " (string delimiter)

substr String.substr

substring substring, String.substring

swapDepths MovieClip.swapDepths

TAB Key.TAB

tan Math.tan

_target _target

targetPath targetPath

tellTarget tellTarget

this this

toggleHighQuality toggleHighQuality

toLowerCase String.toLowerCase

toString Array.toString,Boolean.toString, Date.toString,
Number.toString, Object.toString, XML.toString

_totalframes _totalframes

toUpperCase String.toUpperCase

trace trace

typeof typeof

unescape unescape

unloadMovie unloadMovie, MovieClip.unloadMovie

unshift Array.shift

UP Key.UP

updateAfterEvent updateAfterEvent

_url _url

UTC Date.UTC

valueOf Boolean.valueOf, Number.valueOf, Object.valueOf

var var

_visible _visible

void void

ActionScript element See entry
ActionScript Dictionary 171

while while

_width _width

with with

_x _x

XML XML (object)

xmlDecl XML.xmlDecl

XMLSocket XMLSocket (object)

_xmouse _xmouse

_xscale _xscale

_y _y

_ymouse _ymouse

_yscale _yscale

ActionScript element See entry
Chapter 7172

–– (decrement)
Syntax

––expression
expression––

Arguments

expression A variable, number, element in an array, or property of an object.

Description

Operator; a pre-decrement and post-decrement unary operator that subtracts 1
from the expression. The pre-decrement form of the operator (––expression)
subtracts 1 from expression and returns the result. The post-decrement form of
the operator (expression––) subtracts 1 from the expression and returns the
initial value of the expression (the result prior to the subtraction).

Player

Flash 4 or later.

Example

The pre-decrement form of the operator decrements x to 2 (x - 1 = 2), and
returns the result as y:

x = 3;

y = --x

The post-decrement form of the operator decrements x to 2 (x - 1 = 2), and
returns the original value (x = 3) as the result y:

If x = 3;

y = x--
ActionScript Dictionary 173

++ (increment)
Syntax

++expression
expression++

Arguments

expression A variable, number, element in an array, or property of an object.

Description

Operator; a pre-increment and post-increment unary operator that adds 1 to the
expression. The pre-increment form of the operator (++expression) adds 1 to
the expression and returns the result. The post-increment form of the operator
(expression++) adds 1 to the expression and returns the initial value of the
expression (the result prior to the addition).

The pre-increment form of the operator increments x to 2 (x + 1 = 2), and
returns the result as y:

x = 1;
y = ++x

The post-increment form of the operator increments x to 2 (x + 1 = 2), and
returns the original value (x = 1) as the result y:

x = 1;
y = x++;

Player

Flash 4 or later.

Example

The following example uses ++ as a pre-increment operator with a while
statement.

i = 0
while(i++ < 5){
// this section will execute five times
}

The following example uses ++ as a pre-increment operator:

var a = [];
var i = 0;
while (i < 10) {

a.push(++i);
}
trace(a.join());

This script prints the following:

1,2,3,4,5,6,7,8,9
Chapter 7174

The following example uses ++ as a post-increment operator:

var a = [];
var i = 0;
while (i < 10) {
a.push(i++);

}
trace(a.join());

This script prints the following:

0,1,2,3,4,5,6,7,8,9

! (logical NOT)
Syntax

!expression

Arguments

expression A variable or evaluated expression.

Description

Operator (logical); inverts the Boolean value of a variable or expression. If
expression is a variable with an absolute or converted value true, !variable
the value of ! expression is false. If the expression x && y evaluates to false,
the expression !(x && y) evaluates to true. This operator is identical to the not
operator that was used in Flash 4.

Player

Flash 4 or later.

Example

In the following example the variable happy is set to false, the if condition
evaluates the condition !happy, and if the condition is true, trace sends a
string to the Output window.

happy = false;
if (!happy){
trace("don’t worry be happy");
}

The following illustrates the results of the! operator:

! true returns false

! false returns true
ActionScript Dictionary 175

!= (inequality)
Syntax

expression1 != expression2

Arguments

expression1, expression2 Numbers, strings, Booleans, variables, objects,
arrays, or functions.

Description

Operator (equality); tests for the exact opposite of the == operator. If
expression1 is equal to expression2, the result is false. As with the ==
operator, the definition of equal depends on the data types being compared.

• Numbers, strings, and Boolean values are compared by value.

• Variables, objects, arrays, and functions are compared by reference.

Player

Flash 5 or later.

Example

The following example illustrates the results of the != operator.

5 != 8 returns true

5 != 5 returns false

The following example illustrates the use of the != operator in an if statement:

a = "David";
b = "Fool"
if (a != b){
trace("David is not a fool");
}

See also

== (equality)
Chapter 7176

% (modulo)
Syntax

expression1 % expression2

Arguments

expression1, expression2 Numbers, integers, floating-point numbers, or
strings that convert to a numeric value.

Description

Operator (arithmetic); calculates the remainder of expression1 divided by
expression2. If either of the expression arguments are nonnumeric, the
modulo operator attempts to convert them to numbers.

Player

Flash 4 or later. In Flash 4 files, the % operator is expanded in the SWF file as
x - int(x/y) * y, and may not be as fast or as accurate as the Flash 5 Player
implementation.

Example

The following is a numeric example of using the % operator:

12 % 5 returns 2

4.3 % 2.1 returns 0.1
ActionScript Dictionary 177

%= (modulo assignment)
Syntax

expression1 %= expression2

Arguments

expression1,expression2 Integers and variables.

Description

Operator (assignment); assigns expression1 the value of expression1 %
expression2.

Player

Flash 4 or later.

Example

The following illustrates using the %= operator with variables and numbers:

x %= y is the same as x = x % y

If x = 14 and y = 5 then

x %= 5 returns 4

See also

% (modulo)

& (bitwise AND)
Syntax

expression1 & expression2

Arguments

expression1, expression2 Any number.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned
integers, and performs a Boolean AND operation on each bit of the integer
arguments. The result is a new 32-bit unsigned integer.

Player

Flash 5 or later. In Flash 4 the & operator was used for concatenating strings. In
Flash 5 the & operator is a bitwise AND, and the add and + operators concatenate
strings. Flash 4 files that use the & operator are automatically updated to use add
when brought into the Flash 5 authoring environment.
Chapter 7178

&& (short-circuit AND)
Syntax

expression1 && expression2

Arguments

expression1, expression2 Numbers, strings, variables, or functions.

Description

Operator (logical); performs a Boolean operation on the values of one or both of
the expressions. Causes the Flash interpreter to evaluate expression1 (the left
expression) and returns false if the expression evaluates to false. If
expression1 evaluates to true, expression2 (the right) is evaluated. If
expression2 evaluates to true, the final result is true; otherwise, it is false.

Player

Flash 4 or later.

Example

This example assigns the values of the evaluated expressions to the variables
winner and loser in order to perform a test:

winner = (chocolateEggs >=10) && (jellyBeans >=25);
loser = (chocolateEggs <=1) && (jellyBeans <= 5);
if (winner) {

alert = "You Win the Hunt!";
if (loser) {

alert = "Now THAT'S Unhappy Hunting!";
}

} else {
alert = "We're all winners!";

}

ActionScript Dictionary 179

&= (bitwise AND assignment)
Syntax

expression1 &= expression2

Arguments

expression1, expression2 Integers and variables.

Description

Operator (bitwise assignment); assigns expression1 the value of expression1 &
expression2.

Player

Flash 5 or later.

Example

The following illustrates using the &= operator with variables and numbers:

x &= y is the same as x = x & y

If x = 15 and y = 9 then

x &= 9 returns 9

See also

& (bitwise AND)
Chapter 7180

() (parentheses)
Syntax

(expression1, expression2);
function(functionCall1, ..., functionCallN);

Arguments

expression1, expression2 Numbers, strings, variables, or text.

function The function to be performed on the contents of the parentheses.

functionCall1...functionCallN A series of functions to execute before the
result is passed to the function outside the parentheses.

Description

Operator (general); performs a grouping operation on one or more arguments, or
surrounds one or more arguments and passes the results a parameter to a function
outside the parentheses.

Usage 1: Performs a grouping operation on one or more expressions to control the
order of execution of the operators in the expression. This operator overrides the
automatic precedence order, and causes the expressions within the parentheses to
be evaluated first. When parentheses are nested, Flash evaluates the contents of the
innermost parentheses before the contents of the outer ones.

Usage 2: Surrounds one or more arguments and passes them as parameters to the
function outside the parentheses.

Player

Flash 4 or later.

Example

(Usage 1) The following statements illustrate the use of parentheses to control the
order of execution of expressions. (The result appears below each statement.)

(2 + 3) * (4 + 5)
45
2 + (3 * (4 + 5))
29
2 + (3 * 4) + 5
19

(Usage 2) The following example illustrates the use of parentheses with a function:

getDate();
invoice(item, amount);

See also

with
ActionScript Dictionary 181

– (minus)
Syntax

(Negation) –expression

(Subtraction) expression1 - expression2

Arguments

expression1, expression2 Any number.

Description

Operator (arithmetic); used for negating or subtracting. When used for negating,
it reverses the sign of the numerical expression. When used for subtracting, it
performs an arithmetic subtraction on two numerical expressions, subtracting
expression2 from expression1. When both expressions are integers, the
difference is an integer. When either or both expressions are floating-point
numbers, the difference is a floating-point number.

Player

Flash 4 or later.

Example

(Negation) This statement reverses the sign of the expression 2 + 3:

-(2 + 3)

The result is -5.

(Subtraction) This statement subtracts the integer 2 from the integer 5:

5 - 2

The result is 3, which is an integer.

(Subtraction): This statement subtracts the floating-point number 1.5 from the
floating-point number 3.25:

put 3.25 - 1.5

The result is 1.75, which is a floating-point number.
Chapter 7182

* (multiplication)
Syntax

expression1 * expression2

Arguments

expression1, expression2 Integers or floating-point numbers.

Description

Operator (arithmetic); multiplies two numerical expressions. If both expressions
are integers, the product is an integer. If either or both expressions are floating-
point numbers, the product is a floating-point number.

Player

Flash 4 or later.

Example

This statement multiplies the integers 2 and 3:

2 * 3

The result is 6, which is an integer.

Example

This statement multiplies the floating-point numbers 2.0 and 3.1416:

2.0 * 3.1416

The result is 6.2832, which is a floating-point number.
ActionScript Dictionary 183

*= (multiplication assignment)
Syntax

expression1 *= expression2

Arguments

expression1, expression2 Integers, floating-point numbers, or strings.

Description

Operator (assignment); assigns expression1 the value of expression1 *
expression2.

Player

Flash 4 or later.

Example

The following illustrates using the *= operator with variables and numbers:

x *= y is the same as x = x * y

If x = 5 and y = 10 then

x *= 10 returns 50

See also

* (multiplication)

, (comma)
Syntax

expression1, expression2

Arguments

expression Any number, variable, string, array element, or other data.

Description

Operator; instructs Flash to evaluate expression1, then expression2, and
return the value of expression2. This operator is primarily used with the for
loop statement.

Player

Flash 4 or later.

Example

The following code sample uses the comma operator:

var a=1, b=2, c=3;

This is equivalent to writing the following:

var a=1;
var b=2;
var c=3;
Chapter 7184

. (dot operator)
Syntax

object.property_or_method
instancename.variable
instancename.childinstance.variable

Arguments

object An instance of an object. Some objects require that instances be created
using the constructor for that object. The object can be any of the predefined
ActionScript objects or a custom object. This argument is always to the left of the
dot (.) operator.

property_or_method The name of a property or method associated with an
object. All of the valid method and properties for the predefined objects are listed
in the Method and Property summary tables for that object. This argument is
always to the right of the dot (.) operator.

instancename The name of a movie clip instance.

childinstance An movie clip instance that is a child of the main movie clip.

variable A variable in a movie clip.

Description

Operator; used to navigate movie clip hierarchies in order to access nested child
movie clips, variables, or properties. The dot operator is also used to test or set the
properties of an object, execute a method of an object, or create a data structure.

Player

Flash 4 or later.

See also

[] (array access operator)

Example

This statement identifies the current value of the variable hairColor by the
movie clip person:

person.hairColor

This is equivalent to the following Flash 4 syntax:

/person:hairColor

Example

The following code illustrates how the dot operator can be used to create a
structure of an array:

account.name = "Gary Smith";
account.address = "123 Main St ";
account.city = "Any Town";
account.state = "CA";
account.zip = "12345";
ActionScript Dictionary 185

?: (conditional)
Syntax

expression1 ? expression2 : expression3

Arguments

expression1 An expression that evaluates to a Boolean value, usually a
comparison expression.

expression2, expression3 Values of any type.

Description

Operator (conditional); instructs Flash to evaluate expression1, and return the
value of expression2 if expression1 is true; otherwise return the value of the
expression3.

Player

Flash 4 or later.

/ (division)
Syntax

expression1 / expression2

Arguments

expression Any number.

Description

Operator (arithmetic); divides expression1 by expression2. The expression
arguments and results of the division operation are treated and expressed as
double-precision floating-point numbers.

Player

Flash 4 or later.

Example

This statement divides the floating-point number 22.0 by 7.0 and then displays
the result in the Output window:

trace(22.0 / 7.0);

The result is 3.1429, which is a floating-point number.
Chapter 7186

// (comment delimiter)
Syntax

// comment

Arguments

comment Text that is not part of the code, and should be ignored by
the interpreter.

Description

Comment; indicates the beginning of a script comment. Any text that appears
between the comment delimiter // and the end-of-line character is interpreted
as a comment and ignored by the ActionScript interpreter.

Player

Flash 1 or later.

Example

This script uses comment delimiters slash to identify the first, third, fifth, and
seventh lines as comments:

// set the X position of the ball movie clip
ball = getProperty(ball._x);
// set the Y position of the ball movie clip
ball = getProperty(ball._y);
// set the X position of the kitty movie clip
kitty = getProperty(kitty._x);
// set the Y position of the kitty movie clip
kitty_y = getProperty(kitty._y);

See also

/* (comment delimiter)
ActionScript Dictionary 187

/* (comment delimiter)
Syntax

/* comment */
/*
* comment
* comment
*/

Arguments

comment Any text

Description

Comment; indicates one or more lines of script comments. Any text that appears
between the opening comment tag /* and the closing comment tag */, is
interpreted as a comment and ignored by the ActionScript interpreter. Use the
first syntax to identify single-line comments, and use the second syntax to identify
comments on multiple successive lines. Leaving off the closing tag */ when using
this form of comment delimiter causes the ActionScript compiler to return an
error message.

Player

Flash 5 or later.

See also

// (comment delimiter)

/= (division assignment)
Syntax

expression1 /= expression2

Arguments

expression1,expression2 Integers, floating-point numbers, or strings.

Description

Operator (assignment); assigns expression1 the value of expression1 /
expression2.

Player

Flash 4 or later.

Example

The following illustrates using the /= operator with variables and numbers:

x /= y is the same as x = x /y
x = 10;
y = 2;
x /= y;
// x now contains the value 5
Chapter 7188

[] (array access operator)
Syntax

myArray["a0", "a1",..."aN"];
object[value1, value2, ...valueN];

Arguments

myArray The name of an array.

a0, a1,...aN Elements in an array.

value1, 2,...N Names of properties.

Description

Operator; creates a new object initializing the properties specified in the
arguments, or initializes new array with the elements (a0) specified in
the arguments.

The created object has the generic Object object as its prototype. Using this
operator is the same as calling new Object and populating the properties using
the assignment operator. Using this operator is an alternative to using the new
operator, which allows for the quick and convenient creation of objects.

Player

Flash 4 or later.

Example

The following example code samples are two different ways of creating a new
empty Array object:

myArray =[];
myArray = new Array();

The following is an example of a simple array:

myArray = ["red", "orange", "yellow", "green", "blue", "purple"]
myArray[0]="red"
myArray[1]="yellow"
myArray[2]="green"
myArray[3]="blue"
myArray[4]="purple"
ActionScript Dictionary 189

^(bitwise XOR)
Syntax

expression1 ^ expression2

Arguments

expression1,expression2 Any number.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned
integers, and returns a 1 in each bit position where the corresponding bits in
expression1 or expression1, but not both, are 1.

Player

Flash 5 or later.

Example

15 ^ 9 returns 6
(1111 ^ 1001 = 0110)

^= (bitwise XOR assignment)
Syntax

expression1 ^= expression2

Arguments

expression1,expression2 Integers and variables.

Description

Operator (compound assignment); assigns expression1 the value of
expression1 ^ expression2.

Player

Flash 5 or later.

Example

The following is an example of a ^= operation:

// 15 decimal = 1111 binary
x = 15;
// 9 decimal = 1001 binary
x ^= y;
returns
x ^ y (0110 binary)

The following illustrates using the ^= operator with variables and numbers:

x ^= y is the same as x = x ^ y
If x = 15 and y = 9 then
15 ^= 9 returns 6
Chapter 7190

See also

^(bitwise XOR)

{} (object initializer)
Syntax

object {name1: value1,
name1: value2,

...
nameN: valueN };

Arguments

object The object to create.

name1,2,...N The name of the property.

value1,2,...N The corresponding value for each name property.

Description

Operator; creates a new object and initializes it with the specified name and value
property pairs. The created object has the generic Object object as its prototype.
Using this operator is the same as calling new Object and populating the property
pairs using the assignment operator. Using this operator is an alternative to using
the new operator, which allows for the quick and convenient creation of objects.

Player

Flash 5 or later.

Example

The following code shows how an empty object can be created using the object
initializer operator and using the new Object:

object = {};
object = new Object();

The following creates an object account initializing the properties name,
address, city, state, zip, and balance:

account = { name: "John Smith",
address: "123 Main Street",
city: "Blossomville",
state: "California",
zip: "12345",
balance: "1000" };

The following example shows how array and object initializers can be nested
within each other:

person = { name: "Peter Piper",
children: ["Jack", "Jill", "Moe",] };
ActionScript Dictionary 191

The following example is another way of using the information in the previous
example above, with the same results:

person = new Person();
person.name = 'John Smith';
person.children = new Array();
person.children[0] = 'Jack';
person.children[1] = 'Jill';
person.children[2] = 'Moe';

See also

[] (array access operator)
new
Object (object)
Chapter 7192

| (bitwise OR)
Syntax

expression1 | expression2

Arguments

expression1,expression2 Any number.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned
integers, and returns a 1 in each bit position where the corresponding bits of
either expression1 or expression2 are 1.

Player

Flash 5 or later.

Example

The following is an example of a bitwise OR operation. Note that 15 is
1111 binary:

// 15 decimal = 1111 binary
x = 15;
// 9 decimal = 1001 binary
y = 9;
// x | y = binary
z = x | y;
z = 15

The following is another way of expressing the preceding example:

15 | 9 returns 15
(1111 | 0011 = 1111)
ActionScript Dictionary 193

|| (OR)
Syntax

expression1 || expression2

Arguments

expression1,expression2 A Boolean value or expression that converts to a
Boolean value.

Description

Operator (logical); evaluates expression1 and expression2. The result is (true)
if either or both expressions evaluate to true; the result is (false) only if both
expressions evaluate to false.

With non-Boolean expressions, the logical OR operator causes Flash to evaluate
the expression on the left; if it can be converted to true, the result is true.
Otherwise, it evaluates the expression on the right and the result is the value of
that expression.

Player

Flash 4 or later.

Example

The following example uses the || operator in an if statement:

want = true;
need = true;
love = false;
if (want || need || love){
trace("two out of 3 ain't bad");
}

Chapter 7194

|= (bitwise OR assignment)
Syntax

expression1 |= expression2

Arguments

expression1,expression2 Integers and variables.

Description

Operator (assignment); assigns expression1 the value of expression1 |
expression2.

Player

Flash 5 or later.

Example

The following illustrates using the |= operator with variables and numbers:

x |= y is the same as x = x | y

If x = 15 and y = 9 then

x |= 9 returns 15

See also

| (bitwise OR)

~ (bitwise NOT)
Syntax

~ expression

Arguments

expression Any number.

Description

Operator (bitwise); converts the expression to a 32-bit unsigned integer, then
inverts the bits. Or, simply said, changes the sign of a number and subtracts 1.

A bitwise NOT operation changes the sign of a number and subtracts 1.

Player

Flash 5 or later.

Example

The following is a numerical explanation of a bitwise NOT operation performed
on a variable:

~a, returns -1 if a = 0, and returns -2 if a = 1, thus:

~0=-1 and ~1=-2
ActionScript Dictionary 195

+ (addition)
Syntax

expression1 + expression2

Arguments

expression1,expression2 Integers, numbers, floating-point numbers,
or strings.

Description

Operator; adds numeric expressions or concatenates strings. If one expression is a
string, all other expressions are converted to strings and concatenated.

If both expressions are integers, the sum is an integer; if either or both expressions
are floating-point numbers, the sum is a floating-point number.

Player

Flash 4; Flash 5 or later. In Flash 5, + is a numeric operator or string concatenator
depending on the data type of the argument. In Flash 4, + is only a numeric
operator. Flash 4 files brought into the Flash 5 authoring environment undergo a
conversion process to maintain data type integrity. The first example below
illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison:

Flash 4 file:

x + y

Converted Flash 5 file:

Number(x) + Number(y)

This statement adds the integers 2 and 3 and then displays the resulting integer, 5,
in the Output window:

trace (2 + 3);

This statement adds the floating-point numbers 2.5 and 3.25 and displays the
result, 5.7500, a floating-point number, in the Output window:

trace (2.5 + 3.25);

This statement concatenates two strings and displays the result, “today is my
birthday,” in the Output window:

"today is my" + "birthday"

See also

add
Chapter 7196

+= (addition assignment)
Syntax

expression1 += expression2

Arguments

expression1,expression2 Integers, floating-point numbers, or strings.

Description

Operator (compound assignment); assigns expression1 the value of
expression1 + expression2. This operator also performs string concatenation.

Player

Flash 4 or later.

Example

This following illustrates a numeric use of the += operator:

x += y is the same as x = x + y

If x = 5 and y = 10 then

x += 10 returns 15

This example illustrates using the += operator with a string expression:

x = "My name is"
x += "Mary"

The result for the above code is as follows:

"My name is Mary"

See also

+ (addition)
ActionScript Dictionary 197

< (less than)
Syntax

expression1 < expression2

Arguments

expression1,expression2 Numbers or strings.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is less than expression2 (true), or whether expression1 is
greater than or equal to expression2 (false). String expressions are evaluated
and compared based on the number of characters in the string.

Player

Flash 4; Flash 5 or later. In Flash 5 < is a comparison operator capable of handling
various data types. In Flash 4 < is an numeric operator. Flash 4 files brought into
the Flash 5 authoring environment undergo a conversion process to maintain data
type integrity. The first example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison.

Flash 4 file:

x < y

Converted Flash 5 file:

Number(x) < Number(y)

The following examples illustrate true and false returns for both numbers
and strings:

3 < 10 or "Al" < "Jack" return true

10 < 3 or "Jack" < "Al" return false
Chapter 7198

<< (bitwise left shift)
Syntax

expression1 << expression2

Arguments

expression1 A number, string, or expression to be shifted left.

expression2 A number, string, or expression that converts to an integer
from 0 to 31.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit integers,
and shifts all of the bits in expression1 to the left by the number of places
specified by the integer resulting from the conversion of expression2. The bit
positions that are emptied as a result of this operation are filled in with 0. Shifting
a value left by one position is the equivalent of multiplying it by 2.

Player

Flash 5 or later.

Example

The following example shifts the integer 1 ten bits to the left:

x = 1 << 10

The result of this operation is x = 1024. This is because 1 decimal equals 1
binary, 1 binary shifted left by 10 is 10000000000 binary, and 10000000000
binary is 1024 decimal.

This following example shifts the integer 7 eight bits to the left:

x = 7 << 8

The result of this operation is x = 1792. This is because 7 decimal equals 111
binary, 111 binary shifted left by 8 bits is 11100000000 binary, and
11100000000 binary is 1792 decimal.

See also

>>= (bitwise right shift and assignment)
ActionScript Dictionary 199

<<= (bitwise left shift and assignment)
Syntax

expression1 <<= expression2

Arguments

expression1 A number, string, or expression to be shifted left.

expression2 A number, string, or expression that converts to an integer
from 0 to 31.

Description

Operator (compound assignment); this operator performs a bitwise left shift
operation and stores the contents as a result in expression1.

Player

Flash 5 or later.

Example

The following two expressions are equivalent:

A <<= B
A = (A << B)

See also

<< (bitwise left shift)
>>= (bitwise right shift and assignment)
Chapter 7200

<= (less than or equal to)
Syntax

expression1 <= expression2

Arguments

expression1,expression2 Number or strings.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is less than or equal to expression2 (true), or whether
expression1 is greater than expression2 (false).

Player

Flash 4; Flash 5 or later. In Flash 5 <= is a comparison operator capable of
handling various data types. In Flash 4 <= is an numeric operator. Flash 4
files brought into the Flash 5 authoring environment undergo a conversion
process to maintain data type integrity. The first example below illustrates the
conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison.

Flash 4 file:

x <= y

Converted Flash 5 file:

Number(x) <= Number(y)

The following examples illustrate true and false results for both numbers
and strings:

5 <= 10 or "Al" <= "Jack" returns true

10<= 5 or "Jack" <= "Al" returns false
ActionScript Dictionary 201

<> (inequality)
Syntax

expression1 <> expression2

Arguments

expression1,expression2 Numbers, strings, Booleans, variables, objects,
arrays, or functions.

Description

Operator (equality); tests for the exact opposite of the == operator. If
expression1 is equal to expression2, the result is false. As with the ==
operator, the definition of equal depends on the data types being compared:

• Numbers, strings, and Boolean values are compared by value.

• Variables, objects, arrays, and functions are compared by reference.

This operator has been deprecated in Flash 5, and users are encouraged to make
use of the new != operator.

Player

Flash 2 or later.

See also

!= (inequality)
Chapter 7202

= (assignment)
Syntax

expression1 = expression2

Arguments

expression1 A variable, element of an array, or property of an object.

expression2 A value of any type.

Description

Operator (assignment); assigns the type of expression2 (the argument on the
right) to the variable, array element, or property in expression1.

Player

Flash 4; Flash 5 or later. In Flash 5 = is an assignment operator and the ==
operator is used to evaluate equality. In Flash 4 = is a numeric equality operator.
Flash 4 files brought into the Flash 5 authoring environment undergo a
conversion process to maintain data type integrity. The first example below
illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison.

Flash 4 file:

x = y

Converted Flash 5 file:

Number(x) == Number(y)

The following example uses the assignment operator to assign the number data
type to the variable x:

x = 5

The following example uses the assignment operator to assign the string data type
to the variable x:

x = "hello"
ActionScript Dictionary 203

-= (negation assignment)
Syntax

expression1 -= expression2

Arguments

expression1,expression2 Integers, floating-point numbers, or strings.

Description

Operator (compound assignment); assigns expression1 the value of
expression1 - expression2.

Player

Flash 4 or later.

Example

The following illustrates using the -= operator with variables and numbers:

x -= y is the same as x = x - y

If x = 5 and y = 10 then

x -= 10 returns -5
Chapter 7204

== (equality)
Syntax

expression1 == expression2

Arguments

expression1,expression2 Numbers, strings, Booleans, variables, objects,
arrays, or functions.

Description

Operator (equality); tests two expressions for equality. The result is true if the
expressions are equal.

The definition of equal depends on the data type of the argument:

• Numbers, strings, and Boolean values are compared by value, and are
considered equal if they have the same value. For instance, two strings are equal
if they have the same number of characters.

• Variables, objects, arrays, and functions are compared by reference. Two
variables are equal if they refer to the same object, array, or function.
Two separate arrays are never considered equal, even if they have the same
number of elements.

Player

Flash 5 or later.

Example

The following example uses the == operator with an if statement:

a = "David" , b = "David";
if (a == b){
trace("David is David");
}

ActionScript Dictionary 205

> (greater than)
Syntax

expression1 > expression2

Arguments

expression1,expression2 Integers, floating-point numbers, or strings.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is greater than expression2 (true), or whether expression1 is
less than or equal to expression2 (false).

Player

Flash 4; Flash 5 or later. In Flash 5 > is a comparison operator capable of handling
various data types. In Flash 4 > is an numeric operator. Flash 4 files brought into
the Flash 5 authoring environment undergo a conversion process to maintain data
type integrity. The example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison.

Flash 4 file:

x > y

Converted Flash 5 file:

Number(x) > Number(y)
Chapter 7206

>= (greater than or equal to)
Syntax

expression1 >= expression2

Arguments

expression1, expression2 Strings, integers, or floating-point numbers.

Description

Operator (comparison); compares two expressions and determines whether
expression1 is greater than or equal to expression2 (true), or whether
expression1 is less than expression2 (false).

Player

Flash 4; Flash 5 or later. In Flash 5 >= is a comparison operator capable of
handling various data types. In Flash 4 >= is a numeric operator. Flash 4 files
brought into the Flash 5 authoring environment undergo a conversion process to
maintain data type integrity. The example below illustrates the conversion process.

Example

The following illustrates the conversion of a Flash 4 file containing a numeric
quality comparison.

Flash 4 file:

x >= y

Converted Flash 5 file:

Number(x) >= Number(y)
ActionScript Dictionary 207

>> (bitwise right shift)
Syntax

expression1 >> expression2

Arguments

expression1 A number, string, or expression to be shifted right.

expression2 A number, string, or expression that converts to an integer
from 0 to 31.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit integers,
and shifts all of the bits in expression1 to the right by the number of places
specified by the integer resulting from the conversion of expression2. Bits that
are shifted off to the right are discarded. To preserve the sign of the original
expression, the bits on the left are filled in with 0 if the most significant bit (the
bit farthest to the left) of expression1 is 0, and filled in with 1 if the most
significant bit is 1. Shifting a value right by one position is the equivalent of
dividing by 2 and discarding the remainder.

Player

Flash 5 or later.

Example

The following example converts 65535 to a 32-bit integer, and shifts it eight bits
to the right:

x = 65535 >> 8

The result of the above operation is as follows:

x = 255

This is because 65535 decimal equals 1111111111111111 binary (sixteen 1's),
1111111111111111 binary shifted right by eight bits is 11111111 binary, and
11111111 binary is 255 decimal. The most significant bit is 0 because the integers
are 32-bit, so the fill bit is 0.

The following example converts -1 to a 32-bit integer and shifts it one bit
to the right:

x = -1 >> 1

The result of the above operation is as follows:

x = -1

This is because -1 decimal equals 11111111111111111111111111111111
binary (thirty-two 1's), shifting right by one bit causes the least significant (bit
farthest to the right) to be discarded and the most significant bit to be filled in
with 1. The result is 11111111111111111111111111111111 (thirty-two 1's)
binary, which represents the 32-bit integer -1.
Chapter 7208

See also

>>= (bitwise right shift and assignment)

>>= (bitwise right shift and assignment)
Syntax

expression1 =>>expression2

Arguments

expression1 A number, string, or expression to be shifted left.

expression2 A number, string, or expression that converts to an integer
from 0 to 31.

Description

Operator (compound assignment); this operator performs a bitwise right shift
operation and stores the contents as a result in expression1.

Player

Flash 5 or later.

Example

The following two expressions are equivalent:

A >>= B
A = (A >> B)

The following commented code uses the bitwise operator >>=. It is also an
example of using all bitwise operators.

function convertToBinary(number)
{
var result = "";
for (var i=0; i<32; i++) {
// Extract least significant bit using bitwise AND
var lsb = number & 1;
// Add this bit to our result string
result = (lsb ? "1" : "0") + result;
// Shift number right by one bit, to see next bit
}number >>= 1;
return result;
}
convertToBinary(479)
//Returns the string
00000000000000000000000111011111
//The above string is the binary representation of the decimal
number 479.

See also

<< (bitwise left shift)
ActionScript Dictionary 209

>>> (bitwise unsigned right shift)
Syntax

expression1 >>> expression2

Arguments

expression1 A number, string, or expression to be shifted right.

expression2 A number, string, or expression that converts to an integer
from 0 to 31.

Description

Operator (bitwise); the same as the bitwise right shift operator (>>) except that it
does not preserve the sign of the original expression because the bits on the left
are always filled with 0.

Player

Flash 5 or later.

Example

The following example converts -1 to a 32-bit integer and shifts it one bit
to the right:

x = -1 >>> 1

The result of the above operation is as follows:

x = 2147483647

This is because -1 decimal is 11111111111111111111111111111111 binary
(thirty-two 1's), and when you shift right (unsigned) by one bit, the least
significant (rightmost) bit is discarded, and the most significant (leftmost) bit is
filled with a 0. The result is:

01111111111111111111111111111111 binary,

which represents the 32-bit integer 2147483647.

See also

>>= (bitwise right shift and assignment)
Chapter 7210

>>>= (bitwise unsigned right shift and
assignment)
Syntax

expression1 >>>= expression2

Arguments

expression1 A number, string, or expression to be shifted left.

expression2 A number, string, or expression that converts to an integer
from 0 to 31.

Description

Operator (compound assignment); performs a unsigned bitwise right shift
operation and stores the contents as a result in expression1.

Player

Flash 5 or later.

Example

The following two expressions are equivalent:

A >>>= B
A = (A >>> B)

See also

>>> (bitwise unsigned right shift)
>>= (bitwise right shift and assignment)

add
Syntax

string1 add string2

Arguments

string1,2 Any string.

Description

Operator; concatenates two or more strings. The add operator replaces the Flash 4
& operator; Flash 4 files using the & operator are automatically converted to use
the add operator for string concatenation when brought into the Flash 5
authoring environment. However, the add operator is deprecated in Flash 5, and
use of the + operator is recommended when creating content for the Flash 5
Player. Use the add operator to concatentate strings if you are creating content for
Flash 4 or earlier versions of the Player.

Player

Flash 4 or later.

See also

+ (addition)
ActionScript Dictionary 211

_alpha
Syntax

instancename._alpha
instancename._alpha = value;

Arguments

instancename The name of a movie clip instance.

value A number from 0 to 100 specifying the alpha transparency.

Description

Property; sets or retrieves the alpha transparency (value) of the movie clip.Valid
values are 0 (fully transparent) to 100 (fully opaque). Objects in a movie clip with
_alpha set to 0 are active, even though they are invisible. For example, a button in
a movie clip with _alpha property set to 0 can still be clicked.

Player

Flash 4 or later.

Example

The following statements set the _alpha property of a movie clip named star to
30% when the button is clicked:

on(release) {
setProperty(star._alpha = 30);

}

or

on(release) {
star._alpha = 30;

}

Chapter 7212

and
Syntax

condition1 and condition2

Arguments

condition1,condition2 Conditions or expressions that evaluate to
true or false.

Description

Operator; performs a logical AND operation in the Flash 4 Player. If both
expressions evaluate to true, then the entire expression is true.

Player

Flash 4 or later. This operator has been deprecated in Flash 5, and users are
encouraged to make use of the new && operator.

See also

&& (short-circuit AND)
ActionScript Dictionary 213

Array (object)
The Array object allows you to access and manipulate arrays. An array is an object
whose properties are identified by a number representing their position in the
array. This number is sometimes referred to as the index. All arrays are zero based,
which means that the first element in the array is [0], the second element is [1],
and so on. In the following example, myArray contains the months of the year,
identified by number.

myArray[0] = "January"
myArray[1] = "February"
myArray[2] = "March"
myArray[3] = "April"

To create an Array object, use the constructor new Array. To access the elements
of an array use, the array access operator [].

Method summary for the Array object

Property summary for the Array object

Method Description

concat Concatenates the arguments and returns them as a new array.

join Joins all elements of an array into a string.

pop Removes the last element of an array, and returns its value.

push Adds one or more elements to the end of an array and returns the
array’s new length.

reverse Reverses the direction of an array.

shift Removes the first element from an array, and returns its value.

slice Extracts a section of an array and returns it as a new array.

sort Sorts an array in place.

splice Adds and/or removes elements from an array.

toString Returns a string value representing the elements in the
Array object.

unshift Adds one or more elements to the beginning of an array and
returns the array’s new length.

Property Description

length Returns the length of the array.
Chapter 7214

Constructor for the Array object

Syntax

new Array();
new Array(length);
new Array(element0, element1, element2,...elementN);

Arguments

length An integer specifying the number of elements in the array. In the case of
noncontiguous elements, the length specifies the index number of the last element
in the array plus 1. For more information, see the property Array.length.

element0...elementN A list of two or more arbitrary values. The values can be
numbers, names, or other elements specified in an array. The first element in an
array always has the index or position 0.

Description

Constructor; allows you to access and manipulate elements in an array. Arrays are
zero based and the elements are indexed by their ordinal number.

If you don’t specify any arguments, a zero-length array is created.

Player

Flash 5 or later.

Example

The following example creates a new Array object with an initial length of 0:

myArray = new Array();

The following example creates the new Array object A-Team, with an initial
length of 4:

A-Team = new Array("Jody", "Mary", "Marcelle", "Judy");

The initial elements of the A-Team array are as follows:

myArray[0] = "Jody"

myArray[1] = "Mary"

myArray[2] = "Marcelle"

myArray[3] = "Judy"

See also

Array.length
ActionScript Dictionary 215

Array.concat
Syntax

myArray.concat(value0,value1,...valueN);

Arguments

value0,...valueN Numbers, elements, or strings to be concatenated in
a new array.

Description

Method; concatenates the elements specified in the arguments, if any, and creates
and returns a new array. If the arguments specify an array, the elements of that
array are concatenated, rather than the array itself.

Player

Flash 5 or later.

Example

The following code concatenates two arrays:

alpha = new Array("a","b","c");
numeric = new Array(1,2,3);
alphaNumeric=alpha.concat(numeric);
// creates array ["a","b","c",1,2,3]

The following code concatenates three arrays:

num1=[1,3,5];
num2=[2,4,6];
num3=[7,8,9];
nums=num1.concat(num2,num3) // creates array [1,3,5,2,4,6,7,8,9]
Chapter 7216

Array.join
Syntax

myArray.join();
myArray.join(separator);

Arguments

separator A character or string that separates array elements in the returned
string. If you omit this argument, a comma is used as the default separator.

Description

Method; converts the elements in an array to strings, concatenates them, inserts
the specified separator between the elements, and returns the resulting string.

Player

Flash 5 or later.

Example

The following example creates an array, with three elements. It then joins the
array three times: using the default separator, then a comma and a space, and
then a plus sign.

a = new Array("Earth","Moon","Sun")
// assigns "Earth,Moon,Sun" to myVar1
myVar1=a.join();
// assigns "Earth, Moon, Sun" to myVar2
myVar2=a.join(", ");
// assigns "Earth + Moon + Sun" to myVar3
myVar3=a.join(" + ");
ActionScript Dictionary 217

Array.length
Syntax

myArray.length;

Arguments

None.

Description

Property; contains the length of the array. This property is automatically updated
when new elements are added to the array. During assignment myArray[index]
= value; if index is a number, and index+1 is a greater than the length
property, the length property is updated to index + 1.

Player

Flash 5 or later.

Example

The following code explains how the length property is updated:

//initial length is 0
myArray = new Array();
//myArray.length is updated to 1
myArray[0] = 'a';
//myArray.length is updated to 2
myArray[1] = 'b';
//myArray.length is updated to 10
myArray[9] = 'c';

Array.pop
Syntax

myArray.pop();

Arguments

None.

Description

Method; removes the last element from an array and returns the value of
that element.

Player

Flash 5 or later.

Example

The following code creates the myPets array containing four elements, then
removes its last element:

myPets = ["cat", "dog", "bird", "fish"];
popped = myPets.pop();
Chapter 7218

Array.push
Syntax

myArray.push(value,...);

Arguments

value One or more values to append to the array.

Description

Method; adds one or more elements to the end of an array and returns the
array’s new length.

Player

Flash 5 or later.

Example

The following code creates the myPets array containing two elements, then adds
two elements to it. After the code executes, pushed contains 4.

myPets = ["cat", "dog"];
pushed = myPets.push("bird", "fish");

Array.reverse
Syntax

myArray.reverse();

Arguments

None.

Description

Method; reverses the array in place.

Player

Flash 5 or later.

Example

The following is an example of using the Array.reverse method:

var numbers = [1, 2, 3, 4, 5, 6];
trace(numbers.join());

numbers.reverse();
trace(numbers.join());

Output:

1,2,3,4,5,6
6,5,4,3,2,1
ActionScript Dictionary 219

Array.shift
Syntax

myArray.shift();

Arguments

None.

Description

Method; removes the first element from an array and returns that element.

Player

Flash 5 or later.

Example

The following code creates the array myPets and then removes the first element
from the array:

myPets = ["cat", "dog", "bird", "fish"];
shifted = myPets.shift();

The return value is cat.

See also

Array.pop

Array.unshift

Array.slice
Syntax

myArray.slice(start, end);

Arguments

start A number specifying the index of the starting point for the slice. If start
is a negative number, the starting point begins at the end of the array, where -1 is
the last element.

end A number specifying the index of the ending point for the slice. If you omit
this argument, the slice includes all elements from the start to the end of the array.
If end is a negative number, the ending point is specified from the end of the array,
where -1 is the last element.

Description

Method; extracts a slice or a substring of the array and returns it as a new array
without modifying the original array. The returned array includes the start
element and all elements up to, but not including, the end element.

Player

Flash 5 or later.
Chapter 7220

Array.sort
Syntax

myArray.sort();
myArray.sort(orderfunc);

Arguments

orderfunc An optional comparison function used to determine the sorting
order. Given the arguments A and B, the specified ordering function should
perform a sort as follows:

• -1 if A appears before B in the sorted sequence

• 0 if A = B

• 1 if A appears after B in the sorted sequence

Description

Method; sorts the array in place, without making a copy. If you omit
the orderfunc argument, Flash sorts the elements in place using the
< comparison operator.

Player

Flash 5 or later.

Example

The following example uses Array.sort without specifying the orderfunc
argument:

var fruits = ["oranges", "apples", "strawberries",
 "pineapples", "cherries"];

trace(fruits.join());
fruits.sort();
trace(fruits.join());

Output:

oranges,apples,strawberries,pineapples,cherries
apples,cherries,oranges,pineapples,strawberries
ActionScript Dictionary 221

The following example uses array.sort with a specified order function:

var passwords = [
 "gary:foo",
 "mike:bar",
 "john:snafu",
 "steve:yuck",
 "daniel:1234"
];
 function order (a, b) {
 // Entries to be sorted are in form
 // name:password
 // Sort using only the name part of the
 // entry as a key.
 var name1 = a.split(':')[0];
 var name2 = b.split(':')[0];
 if (name1 < name2) {
 return -1;
 } else if (name1 > name2) {
 return 1;
 } else {
 return 0;
 }
 }
 for (var i=0; i< password.length; i++) {
 trace (passwords.join());
 }
 passwords.sort(order);
 trace ("Sorted:");
 for (var i=0; i< password.length; i++) {
 trace (passwords.join());
 }
Output:

daniel:1234
gary:foo
john:snafu
mike:bar
steve:yuck
Chapter 7222

Array.splice
Syntax

myArray.splice(start, deleteCount, value0,value1...valueN);

Arguments

start The index of the element in the array where the insertion and/or
deletion begins.

deleteCount The number of elements to be deleted. This number includes the
element specified in the start argument. If no value is specified for
deleteCount, the method deletes all of the values from the start element to the
last element in the array.

value Zero or more values to insert into the array at the insertion point specified
in the start argument. This argument is optional.

Description

Method; adds and/or removes elements from an array. This method modifies the
array itself without making a copy.

Player

Flash 5 or later.
ActionScript Dictionary 223

Array.toString
Syntax

myArray.toString();

Arguments

None.

Description

Method; returns a string value representing the elements in the specified Array
object. Every element in the array, starting with index 0 and ending with index
myArray.length-1, is converted to a concatenated string separated by commas.

Player

Flash 5 or later.

Example

The following example creates myArray and converts it to a string:

myArray = new Array();
myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;
myArray[3] = 4;
myArray[4] = 5;

trace(myArray.toString())

Output:

1,2,3,4,5

Array.unshift
Syntax

myArray.unshift(value1,value2,...valueN);

Arguments

value1,...valueN One or more numbers, elements, or variables to be inserted
at the beginning of the array.

Description

Method; adds one or more elements to the beginning of an array and returns the
array’s new length.

Player

Flash 5 or later.
Chapter 7224

Boolean (function)
Syntax

Boolean(expression);

Arguments

expression The variable, number, or string to be converted to a Boolean.

Description

Function; converts the specified argument to a Boolean, and returns the
Boolean value.

Player

Flash 5 or later.
ActionScript Dictionary 225

Boolean (object)
The Boolean object is a simple wrapper object with the same functionality as the
standard JavaScript Boolean object. Use the Boolean object to retrieve the
primitive data type or string representation of Boolean object.

Method summary for the Boolean object

Constructor for the Boolean object

Syntax

new Boolean();
new Boolean(x);

Arguments

x A number, string, Boolean, object, movie clip, or other expression. This
argument is optional.

Description

Constructor; creates an instance of the Boolean object. If you omit the x
argument, the Boolean object is initialized with a value of false. If you specify x,
the method evaluates the argument and returns the result as a Boolean value
according to the following casting rules:

• If x is a number, the function returns true if x does not equal 0, or false if x
is any other number.

• If x is a Boolean, the function returns x.

• If x is an object or movie clip, the function returns true if x does not equal
null; otherwise, the function returns false.

• If x is a string, the function returns true if Number(x) does not equal 0;
otherwise, the function returns false.

Note: To maintain compatibility with Flash 4, the handling of strings by the Boolean object
is not ECMA-262 standard.

Player

Flash 5 or later.

Method Description

toString Returns the string representation (true) or (false) of the
Boolean object.

valueOf Returns the primitive value type of the specified Boolean object.
Chapter 7226

Boolean.toString
Syntax

Boolean.toString();

Arguments

None.

Description

Method; returns the string representation, true or false of the Boolean object.

Player

Flash 5 or later.

Boolean.valueOf
Syntax

Boolean.valueOf();

Arguments

None.

Description

Method; returns the primitive value type of the specified Boolean object, and
converts the Boolean wrapper object to this primitive value type.

Player

Flash 5 or later.
ActionScript Dictionary 227

break
Syntax

break;

Arguments

None.

Description

Action; appears within a loop (for, for..in, do...while or while). The break
action instructs Flash to skip the rest of the loop body, stop the looping action,
and execute the statement following the loop statement. Use the break action to
break out of a series of nested loops.

Player

Flash 4 or later.

Example

The following example uses the break action to exit an otherwise infinite loop:

i = 0;
while (true) {

if (i >= 100) {
break;

}
i++;

}

call
Syntax

call(frame);

Arguments

frame The name or number of the frame to call into the context of the script.

Description

Action; switches the context from the current script to the script attached
to the frame being called. Local variables will not exist once the script is
finished executing.

Player

Flash 4 or later. This action is deprecated in Flash 5, and it is recommended that
you use the function action.

See also

function
Chapter 7228

chr
Syntax

chr(number);

Arguments

number The ASCII code number to convert to a character.

Description

String function; converts ASCII code numbers to characters.

Player

Flash 4 or later. This function has been deprecated in Flash 5; use of the
String.fromCharCode method is recommended.

Example

The following example converts the number 65 to the letter “A”:

chr(65) = "A"

See also

String.fromCharCode
ActionScript Dictionary 229

Color (object)
The Color object allows you to set and retrieve the RGB color value and color
transform of movie clips. The Color object is supported by Flash 5 and later
versions of the Flash Player.

You must use the constructor new Color() to create an instance of the Color
object before calling the methods of the Color object.

Method summary for the Color object

Constructor for the Color object

Syntax

new Color(target);

Arguments

target The name of the movie clip the new color is applied to.

Description

Constructor; creates a Color object for the movie clip specified by the
target argument.

Player

Flash 5 or later.

Example

The following example creates a new Color object called myColor for the
movie myMovie:

myColor = new Color(myMovie);

Method Description

getRGB Returns the numeric RGB value set by the last setRGB call.

getTransform Returns the transform information set by the last
setTransform call.

setRGB Sets the hexadecimal representation of the RGB value for a
Color object.

setTransform Sets the color transform for a Color object.
Chapter 7230

Color.getRGB
Syntax

myColor.getRGB();

Arguments

None.

Description

Method; returns the numeric values set by the last setRGB call.

Player

Flash 5 or later.

Example

The following code retrieves the RGB value as a hexadecimal string:

value = (getRGB()).toString(16);

See also

Color.setRGB

Color.getTransform
Syntax

myColor.getTransform();

Arguments

None.

Description

Method; returns the transform value set by the last setTransform call.

Player

Flash 5 or later.

See also

Color.setTransform
ActionScript Dictionary 231

Color.setRGB
Syntax

myColor.setRGB(0xRRGGBB);

Arguments

0xRRGGBB The hexadecimal or RGB color to be set. RR, GG, and BB each consist
of two hexadecimal digits specifying the offset of each color component.

Description

Method; specifies an RGB color for the Color object. Calling this method
overrides any previous settings by the setTransform method.

Player

Flash 5 or later.

Example

The following example sets the RGB color value for the movie clip myMovie:

myColor = new Color(myMovie);
myColor.setRGB(0x993366);

See also

Color.setTransform

Color.setTransform
Syntax

myColor.setTransform(colorTransformObject);

Arguments

colorTransformObject An object created using the constructor of the generic
Object object, specifying color transform values for parameters. The color
transform object must have the parameters ra, rb, ga, gb, ba, bb, aa, ab,
which are explained below.

Description

Method; sets color transform information for a Color object. The
colorTransformObject argument is an object that you create using the generic
Object object with parameters specifying the percentage and offset values for the
red, green, blue, and alpha (transparency) components of a color, entered in a
0xRRGGBBAA format.
Chapter 7232

The parameters for a color transformobject are defined as follows:

• ra is the percentage for the red component (-100 to 100).

• rb is the offset for the red component (-255 to 255).

• ga is the percentage for the green component (-100 to 100).

• gb is the offset for the green component (-255 to 255).

• ba is the percentage for the blue component (-100 to 100).

• bb is the offset for the blue component (-255 to 255).

• aa is the percentage for alpha (-100 to 100).

• ab is the offset for alpha (-255 to 255).

You create a color transformobject as follows:

myColorTransform = new Object();
myColorTransform.ra = 50;
myColorTransform.rb = 244;
myColorTransform.ga = 40;
myColorTransform.gb = 112;
myColorTransform.ba = 12;
myColorTransform.bb = 90;
myColorTransform.aa = 40;
myColorTransform.ab = 70;

You could also use the following syntax:

myColorTransform = { ra: ‘50’, rb: ‘244’, ga: ‘40’, gb: ‘112’, ba:
‘12’, bb: ‘90’, aa: ‘40’, ab: ‘70’}

Player

Flash 5 or later.

Example

The following example shows the process of creating a new Color object for a
target movie, creating a color transformobject with the parameters defined above
using the Object constructor, and passing the color transform object to a Color
object using the setTransform method.

//Create a color object called myColor for the target myMovie
myColor = new Color(myMovie);
//Create a color transform object called myColorTransfrom using
//the generic Object object
myColorTransform = new Object;
// Set the values for myColorTransform
myColorTransform = { ra: '50', rb: '244', ga: '40', gb: '112', ba:
'12', bb: '90', aa: '40', ab: '70'}
//Associate the color transform object with the Color object
created for myMovie
myColor.setTransform(myColorTransform);
ActionScript Dictionary 233

continue
Syntax

continue;

Arguments

None.

Description

Action; appears within several types of loop statements.

In a while loop, continue causes Flash to skip the rest of the loop body and jump
to the top of the loop, where the condition is tested.

In a do...while loop, continue causes Flash to skip the rest of the loop body
and jump to the bottom of the loop, where the condition is tested.

In a for loop, continue causes Flash to skip the rest of the loop body and jump
to the evaluation of the for loop’s post-expression.

In a for...in loop, continue causes Flash to skip the rest of the loop body
and jump back to the top of the loop, where the next value in the enumeration
is processed.

Player

Flash 4 or later.

See also

do...while
for
for..in
while
Chapter 7234

_currentframe
Syntax

instancename._currentframe

Arguments

instancename The name of a movie clip instance.

Description

Property (read-only); returns the number of the frame where the playhead is
currently located in the Timeline.

Player

Flash 4 or later.

Example

The following example uses _currentframe to direct a movie to go five frames
ahead of the frame containing the action:

gotoAndStop(_currentframe + 5);

Date (object)
The Date object allows you to retrieve date and time values relative to universal
time (Greenwich Mean Time, now called Universal Coordinated Time) or relative
to the operating system on which the Flash Player is running. To call the methods
of the Date object, you must first create an instance of the Date object using
the constructor.

The Date object requires the Flash 5 Player.

The methods of the Date object are not static, but apply only to the individual
instance of the Date object specified when the method is called.

Method summary for Date object

Method Description

getDate Returns the day of the month of the specified Date object
according to local time.

getDay Returns the day of the month for the specified Date object
according to local time.

getFullYear Returns the four-digit year of the specified Date object
according to local time.

getHours Returns the hour of the specified Date object according
to local time.
ActionScript Dictionary 235

getMilliseconds Returns the milliseconds of the specified Date object
according to local time.

getMinutes Returns the minutes of the specified Date object according
to local time.

getMonth Returns the month of the specified Date object according
to local time.

getSeconds Returns the seconds of the specified Date object
according to local time.

getTime Returns the number of milliseconds since midnight January
1, 1970, universal time, for the specified Date object.

getTimezoneOffset Returns the difference, in minutes, between the computer’s
local time and the universal time.

getUTCDate Returns the day (date) of the month of the specified Date
object according to universal time.

getUTCDay Returns the day of the week of the specified Date object
according to universal time.

getUTCFullYear Returns the four-digit year of the specified Date object
according to universal time.

getUTCHours Returns the hour of the specified Date object according to
universal time.

getUTCMilliseconds Returns the milliseconds of the specified Date object
according to universal time.

getUTCMinutes Returns the minute of the specified Date object according
to universal time.

getUTCMonth Returns the month of the specified Date object according
to universal time.

getUTCSeconds Returns the seconds of the specified Date object
according to universal time.

getYear Returns the year of the specified Date object according
to local time.

setDate Returns the day of the month of a specified Date object
according to local time.

setFullYear Sets the full year for a Date object according to local time.

setHours Sets the hours for a Date object according to local time.

setMilliseconds Sets the milliseconds for a Date object according
to local time.

setMinutes Sets the minutes for a Date object according to local time.

Method Description
Chapter 7236

setMonth Sets the month for a Date object according to local time.

setSeconds Sets the seconds for a Date object according to local time.

setTime Sets the date for the specified Date object in milliseconds.

setUTCDate Sets the date of the specified Date object according to
universal time.

setUTCFullYear Sets the year of the specified Date object according to
universal time.

setUTCHours Sets the hour of the specified Date object according to
universal time.

setUTCMilliseconds Sets the milliseconds of the specified Date object
according to universal time.

setUTCMinutes Sets the minute of the specified Date object according to
universal time.

setUTCMonth Sets the month represented by the specified Date object
according to universal time.

setUTCSeconds Sets the seconds of the specified Date object according to
universal time.

setYear Sets the year for the specified Date object according
to local time.

toString Returns a string value representing the date and time
stored in the specified Date object.

Date.UTC Returns the number of milliseconds between midnight on
January 1, 1970, universal time, and the specified time.

Method Description
ActionScript Dictionary 237

Constructor for the Date object

Syntax

new Date();
new Date(year [, month [, date [, hour [, minute [, second [,
millisecond]]]]]]);

Arguments

year A value of 0 to 99 indicates 1900 though 1999, otherwise all 4 digits of
the year must be specified.

month An integer from 0 (January) to 11 (December). This argument
is optional.

date An integer from 1 to 31. This argument is optional.

hour An integer from 0 (midnight) to 23 (11 p.m.).

minute An integer from 0 to 59. This argument is optional.

second An integer from 0 to 59. This argument is optional.

millisecond An integer from 0 to 999. This argument is optional.

Description

Object; constructs a new Date object holding the current date and time.

Player

Flash 5 or later.

Example

The following example retrieves the current date and time:

now = new Date();

The following example creates a new Date object for a Gary’s birthday,
August 7, 1974:

gary_birthday = new Date (74, 7, 7);

The following example creates a new Date object, concatenates the returned
values of the Date object methods getMonth, getDate, and getFullYear, and
displays them in the text field specified by the variable dateTextField.

myDate = new Date();
dateTextField = (mydate.getMonth() + "/" + myDate.getDate() + "/"
+ mydate.getFullYear());
Chapter 7238

Date.getDate
Syntax

myDate.getDate();

Arguments

None.

Description

Method; returns the day of the month (an integer from 1 to 31) of the specified
Date object according to local time.

Player

Flash 5 or later.

Date.getDay
Syntax

myDate.getDay();

Arguments

None.

Description

Method; returns the day of the month (0 for Sunday, 1 for Monday, and so on) of
the specified Date object according to local time. Local time is determined by the
operating system on which the Flash Player is running.

Player

Flash 5 or later.
ActionScript Dictionary 239

Date.getFullYear
Syntax

myDate.getFullYear();

Arguments

None.

Description

Method; returns the full year (a four-digit number, for example, 2000) of the
specified Date object, according to local time. Local time is determined by the
operating system on which the Flash Player is running.

Player

Flash 5 or later.

Example

The following example uses the constructor to create a new Date object and send
the value returned by the getFullYear method to the Output window:

myDate = new Date();
trace(myDate.getFullYear());

Date.getHours
Syntax

myDate.getHours();

Arguments

None.

Description

Method; returns the hour (an integer from 0 to 23) of the specified Date object,
according to local time. Local time is determined by the operating system on
which the Flash Player is running.

Player

Flash 5 or later.
Chapter 7240

Date.getMilliseconds
Syntax

myDate.getMilliseconds();

Arguments

None.

Description

Method; returns the milliseconds (an integer from 0 to 999) of the specified Date
object, according to local time. Local time is determined by the operating system
on which the Flash Player is running.

Player

Flash 5 or later.

Date.getMinutes
Syntax

myDate.getMinutes();

Arguments

None.

Description

Method; returns the minutes (an integer from 0 to 59) of the specified Date
object, according to local time. Local time is determined by the operating system
on which the Flash Player is running.

Player

Flash 5 or later.

Date.getMonth
Syntax

myDate.getMonth();

Arguments

None.

Description

Method; returns the month (0 for January, 1 for February, and so on) of the
specified Date object, according to local time. Local time is determined by the
operating system on which the Flash Player is running.

Player

Flash 5 or later.
ActionScript Dictionary 241

Date.getSeconds
Syntax

myDate.getSeconds();

Arguments

None.

Description

Method; returns the seconds (an integer from 0 to 59) of the specified Date
object, according to local time. Local time is determined by the operating system
on which the Flash Player is running.

Player

Flash 5 or later.

Date.getTime
Syntax

myDate.getTime();

Arguments

None.

Description

Method; returns the number of milliseconds (an integer from 0 to 999) since
midnight January 1, 1970, universal time, for the specified Date object. Use this
method to represent a specific instant in time when comparing two or more times
defined in different time zones.

Player

Flash 5 or later.
Chapter 7242

Date.getTimezoneOffset
Syntax

mydate.getTimezoneOffset();

Arguments

None.

Description

Method; returns the difference, in minutes, between the computer’s local time and
the universal time.

Player

Flash 5 or later.

Example

The following example returns the difference between the local daylight-saving
time for San Francisco and the universal time. Daylight-savings time is factored
into the returned result only if the date defined in the Date object is during the
daylight-savings time.

new Date().getTimezoneOffset();

The result is as follows:

420 (7 hours * 60 minutes/hour = 420 minutes)

Date.getUTCDate
Syntax

myDate.getUTCDate();

Arguments

None.

Description

Method; returns the day (date) of the month in the specified Date object,
according to universal time.

Player

Flash 5 or later.
ActionScript Dictionary 243

Date.getUTCDay
Syntax

myDate.getUTCDate();

Arguments

None.

Description

Method; returns the day of the week of the specified Date object, according to
universal time.

Date.getUTCFullYear
Syntax

myDate.getUTCFullYear();

Arguments

None.

Description

Method; returns the four-digit year of the specified Date object, according to
universal time.

Player

Flash 5 or later.

Date.getUTCHours
Syntax

myDate.getUTCHours();

Arguments

None.

Description

Method; returns the hours of the specified Date object, according to
universal time.

Player

Flash 5 or later.
Chapter 7244

Date.getUTCMilliseconds
Syntax

myDate.getUTCMilliseconds();

Arguments

None.

Description

Method; returns the milliseconds of the specified Date object, according to
universal time.

Player

Flash 5 or later.

Date.getUTCMinutes
Syntax

myDate.getUTCMinutes();

Arguments

None.

Description

Method; returns the minutes of the specified Date object, according to
universal time.

Player

Flash 5 or later.

Date.getUTCMonth
Syntax

myDate.getUTCMonth();

Arguments

None.

Description

Method; returns the month of the specified Date object, according to
universal time.

Player

Flash 5 or later.
ActionScript Dictionary 245

Date.getUTCSeconds
Syntax

myDate.getUTCSeconds();

Arguments

None.

Description

Method; returns the seconds in the specified Date object, according to
universal time.

Player

Flash 5 or later.

Date.getYear
Syntax

myDate.getYear();

Arguments

None.

Description

Method; returns the year of the specified Date object, according to local time.
Local time is determined by the operating system on which the Flash Player is
running. The year is the full year minus 1900. For example, the year 2000 is
represented as 100.

Player

Flash 5 or later.

Date.setDate
Syntax

myDate.setDate(date);

Arguments

date An integer from 1 to 31.

Description

Method; sets the day of the month for the specified Date object, according to
local time. Local time is determined by the operating system on which the Flash
Player is running.

Player

Flash 5 or later.
Chapter 7246

Date.setFullYear
Syntax

myDate.setFullYear(year [, month [, date]]);

Arguments

year A four-digit number specifying a year. Two-digit numbers do not represent
years; for example, 99 is not the year 1999, but the year 99.

month An integer from 0 (January) to 11 (December). This argument is
optional.

date A number from 1 to 31. This argument is optional.

Description

Method; sets the year of the specified Date object, according to local time. If the
month and date arguments are specified, they are also set to local time. Local time
is determined by the operating system on which the Flash Player is running.

The results of getUTCDay and getDay may change as a result of calling
this method.

Player

Flash 5 or later.

Date.setHours
Syntax

myDate.setHours(hour);

Arguments

hour An integer from 0 (midnight) to 23 (11 p.m.).

Description

Method; sets the hours for the specified Date object according to local time. Local
time is determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.
ActionScript Dictionary 247

Date.setMilliseconds
Syntax

myDate.setMilliseconds(millisecond);

Arguments

millisecond An integer from 0 to 999.

Description

Method; sets the milliseconds for the specified Date object according to local
time. Local time is determined by the operating system on which the Flash
Player is running.

Player

Flash 5 or later.

Date.setMinutes
Syntax

myDate.setMinutes(minute);

Arguments

minute An integer from 0 to 59.

Description

Method; sets the minutes for a specified Date object according to local time. Local
time is determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.setMonth
Syntax

myDate.setMonth(month [, date]);

Arguments

month An integer from 0 (January) to 11 (December).

date An integer from 1 to 31. This argument is optional.

Description

Method; sets the month for the specified Date object in local time. Local time is
determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.
Chapter 7248

Date.setSeconds
Syntax

myDate.setSeconds(second);

Arguments

second An integer from 0 to 59.

Description

Method; sets the seconds for the specified Date object in local time. Local time is
determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.setTime
Syntax

myDate.setTime(millisecond);

Arguments

millisecond An integer from 0 to 999.

Description

Method; sets the Date for the specified Date object in milliseconds.

Player

Flash 5 or later.

Date.setUTCDate
Syntax

myDate.setUTCDate(date);

Arguments

date An integer from 1 to 31.

Description

Method; sets the date for the specified Date object in universal time. Calling this
method does not modify the other fields of the specified Date, but the getUTCDay
and getDay methods may report a new value if the day of the week changes as a
result of calling this method.

Player

Flash 5 or later.
ActionScript Dictionary 249

Date.setUTCFullYear
Syntax

myDate.setUTCFullYear(year [, month [, date]]);

Arguments

year The year specified as a full four-digit year, for example, 2000.

month An integer from 0 (January) to 11 (December). This argument
is optional.

date An integer from 1 to 31. This argument is optional.

Description

Method; sets the year or the specified Date object (mydate) in universal time.

Optionally, this method can also set the month and date represented by the
specified Date object. No other fields of the Date object are modified. Calling
setUTCFullyear may cause getUTCDay and getDay to report a new value if the
day of the week changes as a result of this operation.

Player

Flash 5 or later.

Date.setUTCHours
Syntax

myDate.setUTCHours(hour [, minute [, second [, millisecond]]]));

Arguments

hour An integer from 0 (midnight) to 23 (11p.m.).

minute An integer from 0 to 59. This argument is optional.

second An integer from 0 to 59. This argument is optional.

millisecond An integer from 0 to 999. This argument is optional.

Description

Method; sets the hour for the specified Date object in universal time.

Player

Flash 5 or later.
Chapter 7250

Date.setUTCMilliseconds
Syntax

myDate.setUTCMilliseconds(millisecond);

Arguments

millisecond An integer from 0 to 999.

Description

Method; sets the milliseconds for the specified Date object in universal time.

Player

Flash 5 or later.

Date.setUTCMinutes
Syntax

myDate.setUTCMinutes(minute [, second [, millisecond]]));

Arguments

minute An integer from 0 to 59.

second An integer from 0 to 59. This argument is optional.

millisecond An integer from 0 to 999. This argument is optional.

Description

Method; sets the minute for the specified Date object in universal time.

Player

Flash 5 or later.
ActionScript Dictionary 251

Date.setUTCMonth
Syntax

myDate.setUTCMonth(month [, date]);

Arguments

month An integer from 0 (January) to 11 (December).

date An integer from 1 to 31. This argument is optional.

Description

Method; sets the month, and optionally the day (date), for the specified Date
object in universal time. Calling this method does not modify the other fields of
the specified Date object, but the getUTCDay and getDay methods may report a
new value if the day of the week changes as a result of specifying the date
argument when calling setUTCMonth.

Player

Flash 5 or later.

Date.setUTCSeconds
Syntax

myDate.setUTCSeconds(second [, millisecond]));

Arguments

second An integer from 0 to 59.

millisecond An integer from 0 to 999. This argument is optional.

Description

Method; sets the seconds for the specified Date object in universal time.

Player

Flash 5 or later.
Chapter 7252

Date.setYear
Syntax

myDate.setYear(year);

Arguments

year A four-digit number, for example, 2000.

Description

Method; sets the year for the specified date object in local time. Local time is
determined by the operating system on which the Flash Player is running.

Player

Flash 5 or later.

Date.toString
Syntax

myDate.toString();

Arguments

None.

Description

Method; returns a string value for the specified date object in a readable format.

Player

Flash 5 or later.

Example

The following example returns the information in the dateOfBirth Date object
as a string:

var dateOfBirth = newDate(74, 7, 7, 18, 15);
trace (dateOfBirth.toString());

Output (for Pacific Standard Time):

Wed Aug 7 18:15:00 GMT-0700 1974
ActionScript Dictionary 253

Date.UTC
Syntax

Date.UTC(year, month [, date [, hour [, minute [, second [,
millisecond]]]]]);

Arguments

year A four-digit number, for example, 2000.

month An integer from 0 (January) to 11 (December).

date An integer from 1 to 31. This argument is optional.

hour An integer from 0 (midnight) to 23 (11 p.m.).

minute An integer from 0 to 59. This argument is optional.

second An integer from 0 to 59. This argument is optional.

millisecond An integer from 0 to 999. This argument is optional.

Description

Method; returns the number of milliseconds between midnight on January 1,
1970, universal time, and the time specified in the arguments. This is a static
method that is invoked through the Date object constructor, not through a
specific Date object. This method allows you to create a Date object that assumes
universal time, whereas the Date constructor assumes local time.

Player

Flash 5 or later.

Example

The following example creates a new Date object gary_birthday defined in
universal time. This is the universal time variation of the example used for the
constructor method new Date():

gary_birthday = new Date(Date.UTC(1974, 7, 8));
Chapter 7254

delete
Syntax

delete (reference);

Arguments

reference The name of variable or object to eliminate.

Description

Operator; destroys the object or variable specified as the reference, and returns
true if the object was successfully deleted; otherwise returns false. This operator
is useful for freeing up memory used by scripts, although, delete is an operator, it
is typically used as a statement:

delete x;

The delete operator may fail and return false if the reference does not exist, or
may not be deleted. Predefined objects and properties, and variables declared with
var, may not be deleted.

Player

Flash 5 or later.

Example

The following example creates an object, uses it, and then deletes it once it is no
longer needed:

account = new Object();
account.name = 'Jon';
account.balance = 10000;
...
delete account;

The following example deletes a property of an object:

// create the new object "account"
account = new Object();
// assign property name to the account

account.name = 'Jon';
// delete the property
delete account.name;
ActionScript Dictionary 255

The following is another example of deleting an object property:

// create an Array object with length 0
array = new Array();
// Array.length is now 1

array[0] = "abc";
// add another element to the array,Array.length is now 2

array[1] = "def";
// add another element to array,Array.length is now 3

array[2] = "ghi";
// array[2] is deleted, but Array.length is not changed,

delete array[2];

The following example illustrates the behavior of delete on object references:

// create a new object, and assign the variable ref1 to refer to
the object
ref1 = new Object();
ref1.name = "Jody";
// copy the reference variable into a new variable, and delete
ref1
ref2 = ref1;
delete ref1;

If ref1 had not been copied into ref2, the object would have been deleted when
we deleted ref1, because there would be no references to it. If we were to delete
ref2, there would no longer be any references to the object, and it would be
destroyed and the memory it was using would be made available.

See also

var
Chapter 7256

do...while
Syntax

do {
statement;
} while (condition);

Arguments

condition The condition to evaluate.

statement The statement to execute as long as condition evaluates to true.

Description

Action; executes the statements, and then evaluates the condition in a loop for as
long as the condition is true.

Player

Flash 4 or later.

See also

break
continue
ActionScript Dictionary 257

_droptarget
Syntax

draggableInstanceName._droptarget

Arguments

draggableInstanceName The name of a movie clip instance that was the
target of a startDrag action.

Description

Property (read-only); returns the absolute path in slash syntax notation of the
movie clip instance on which the draggableInstanceName was dropped. The
_droptarget property always returns a path that starts with /. To compare the
_droptarget property of an instance to a reference, use eval to convert the
returned value from slash syntax to a reference.

Player

Flash 4 or later.

Example

The following example evaluates the _droptarget property of the garbage
movie clip instance and uses eval to convert it from slash syntax to a dot syntax
reference. The garbage reference is then compared to the reference to the trash
movie clip instance. If the two references are equivalent, the visibility of garbage
is set to false. If they are not equivalent, the garbage instance is reset to its
original position.

if (eval(garbage._droptarget) == _root.trash) {
garbage._visible = false;

} else {
garbage._x = x_pos;
garbage._y = y_pos;

}

The variables x_pos and y_pos are set on frame 1 of the movie with the
following script:

x_pos = garbage._x;
y_pos = garbage._y;

See also

startDrag
Chapter 7258

duplicateMovieClip
Syntax

duplicateMovieClip(target, newname, depth);

Arguments

target The target path of the movie to duplicate.

newname A unique identifier for the duplicate movie clip.

depth The depth level of the movie clip. The depth level is the stacking order
that determines how movie clips and other objects appear when they overlap. The
first movie clip that your create, or instance that you drag onto the Stage, is
assigned a depth of level 0. You must assign each successive or duplicated movie
clip a different depth level to prevent it from replacing movies on occupied levels
or the original movie clip.

Description

Action; creates an instance of a movie clip while the movie is playing. Duplicate
movie clips always start at frame 1, no matter what frame the original movie clip
was on. Variables in the parent movie clip are not copied into the duplicate movie
clip. If the parent movie clip is deleted the duplicate movie clip is also deleted. Use
the removeMovieClip action or method to delete a movie clip instance created
with duplicateMovieClip.

Player

Flash 4 or later.

Example

This statement duplicates the movie clip instance flower ten times. The variable
i is used to create a new instance name and a depth.

on(release) {
amount = 10;
while(amount>0) {

duplicateMovieClip (_root.flower, "mc" + i, i);
setProperty("mc" + i, _x, random(275));
setProperty("mc" + i, _y, random(275));
setProperty("mc" + i, _alpha, random(275));
setProperty("mc" + i, _xscale, random(50));
setProperty("mc" + i, _yscale, random(50));
i = i + 1;
amount = amount-1;

}
}

See also

removeMovieClip
MovieClip.removeMovieClip
ActionScript Dictionary 259

else
Syntax

else {statement(s)};

Arguments

statement(s) An alternative series of statements to run if the condition
specified in the if statement is false.

Description

Action; specifies the actions, clauses, arguments, or other conditional to run if the
initial if statement returns false.

Player

Flash 4 or later.

See also

if

eq (equal—string specific)
Syntax

expression1 eq expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Comparison operator; compares two expressions for equality and returns true if
expression1 is equal to expression2; otherwise, returns false.

Player

Flash 1 or later. This operator has been deprecated in Flash 5; use of the new ==
(equality) operator is recommended.

See also

== (equality)
Chapter 7260

escape
Syntax

escape(expression);

Arguments

expression The expression to convert into a string and encode in a
URL-encoded format.

Description

Function; converts the argument to a string and encodes it in a URL-encoded
format, where all alphanumeric characters are escaped with % hexadecimal
sequences.

Player

Flash 5 or later.

Example

escape("Hello{[World]}");

The result of the above code is as follows:

Hello%7B%5BWorld%5D%7D

See also

unescape
ActionScript Dictionary 261

eval
Syntax

eval(expression);

Arguments

expression A string containing the name of a variable, property, object or
movie clip to retrieve.

Description

Function; accesses variables, properties, objects, or movie clip by name. If the
expression is a variable or a property, the value of the variable or property is
returned. If the expression is an object or movie clip, a reference to the object or
movie clip is returned. If the element named in the expression can not be found,
undefined is returned.

In Flash 4, the eval function was used to simulate an arrays. In Flash 5 it is
recommended that you use the Array object to create arrays.

Note: The ActionScript eval action is not the same as the JavaScript eval function, and
cannot be used to evaluate statements.

Player

Flash 5 or later for full functionality. You can use eval when exporting to the
Flash 4 Player, but you must use slash notation, and can only access variables, not
properties or objects.

Example

The following example uses eval to determine the value of the variable x, and sets
it to the value of y:

x = 3;
y = eval("x");

The following example uses eval to reference the movie clip object associated
with a movie clip instance on the Stage, Ball:

eval("_root.Ball");

See also

Array (object)
Chapter 7262

evaluate
Syntax

statement;

Arguments

None.

Description

Action; creates a new empty line and inserts a ; for entering unique scripting
statements using Expression field in the Actions panel. The evaluate statement
also allows users who are scripting in the Flash 5 Actions panel’s Normal Mode
to call functions.

Player

Flash 5 or later.

_focusrect
Syntax

_focusrect = Boolean;

Arguments

Boolean true or false.

Description

Property (global); specifies whether a yellow rectangle appears around the button
that has the current focus. The default value true (nonzero) displays a yellow
rectangle around the currently focused button or text field as the user presses the
Tab key to navigate. Specify false to display only the button “over” state (if any is
defined) as users navigate.

Player

Flash 4 or later.
ActionScript Dictionary 263

for
Syntax

for(init; condition; next); {
statement;
}

Arguments

init An expression to evaluate before beginning the looping sequence, typically
an assignment expression. A var statement is also permitted for this argument.

condition An expression that evaluates to true or false. The condition
is evaluated before each loop iteration; the loop exits when the condition
evaluates to false.

next An expression to evaluate after each loop iteration; usually an assignment
expression using the ++ (increment) or -- (decrement) operators.

statement A statement within the body of the loop to execute.

Description

Action; a loop construct that evaluates the init (initialize) expression once, and
then begins a looping sequence by which, as long as the condition evaluates to
true, statement is executed and the next expression is evaluated.

Some properties can not be enumerated by the for or for..in actions. For
example, the built-in methods of the Array object (Array.sort and
Array.reverse) are not included in the enumeration of an Array object,
and movie clip properties, such as _x and _y, are not enumerated.

Player

Flash 5 or later.

Example

The following example uses for to add the elements in an array:

for(i=0; i<10; i++) {
array [i] = (i + 5)*10;
}

Returns the following array:

[50, 60, 70, 80, 90, 100, 110, 120, 130, 140]

The following is an example of using for to perform the same action repeatedly.
In the code below, the for loop adds the numbers from 1 to 100:

var sum = 0;
for (var i=1; i<=100; i++) {

sum = sum + i;
}

Chapter 7264

See also

++ (increment)
–– (decrement)
for..in
var

for..in
Syntax

for(variableiterant in object){
statement;
}

Arguments

variableiterant The name of a variable to act as the iterant, referencing each
property of an object or element in an array.

object The name of an object to be iterated over.

statement A statement to execute for each iteration.

Description

Action; loops through the properties of an object or element in an array, and
executes the statement for each property of an object.

Some properties can not be enumerated by the for or for..in actions.
For example, the built-in methods of the Array object (Array.sort and
Array.reverse) are not included in the enumeration of an Array object,
and movie clip properties such as _x and _y are not enumerated.

The for...in construct iterates over properties of objects in the iterated object's
prototype chain. If the child's prototype is parent, iterating over the properties of
the child with for...in, will also iterate over the properties of parent.

Player

Flash 5 or later.

Example

The following is an example of using for..in to iterate over the properties
of an object:

myObject = { name:'Tara', age:27, city:'San Francisco' };
for (name in myObject) {

trace ("myObject." + name + " = " + myObject[name]);
}

The output of this example is as follows:

myObject.name = Tara
myObject.age = 27
myObject.city = San Francisco
ActionScript Dictionary 265

The following is an example of using the typeof operator with for..in to iterate
over a particular type of child:

for (name in myMovieClip) {
if (typeof (myMovieClip[name]) = "movieclip") {

trace ("I have a movie clip child named " + name);
}

}

The following example enumerates the children of a movie clip and sends each to
frame 2 in their respective Timelines. The RadioButtonGroup movie clip is a
parent with several children, _RedRadioButton_, _GreenRadioButton_ and
_BlueRadioButton.

for (var name in RadioButtonGroup) {
RadioButtonGroup[name].gotoAndStop(2);

}

_framesloaded
Syntax

instancename._framesloaded

Arguments

instancename The name of the movie clip instance to be evaluated.

Description

Property (read-only); the number of frames that have been loaded from a
streaming movie. This property is useful for determining whether the contents of
a specific frame, and all the frames before it, have loaded and are available locally
in a user’s browser. This property is useful for monitoring the download process of
large movies. For example, you might want to display a message to users
indicating that the movie is loading until a specified frame in the movie has
finished loading.

Player

Flash 4 or later.

Example

The following is an example of using the _framesloaded property to coordinate
the start of the movie to the number of frames loaded:

if (_framesloaded >= _totalframes) {
gotoAndPlay ("Scene 1", "start");
} else {
setProperty ("_root.loader", _xscale, (_framesloaded/
_totalframes)*100);
}

Chapter 7266

fscommand
Syntax

fscommand(command, arguments);

Arguments

command A string passed to the host application for any use.

arguments A string passed to the host application for any use.

Description

Action; allows the Flash movie to communicate with the program hosting
the Flash Player. In a Web browser, fscommand calls the JavaScript function
moviename_Dofscommand in the HTML page containing the Flash movie, where
moviename is the name of the Flash Player as assigned by the NAME attribute of the
EMBED tag or the ID property of the OBJECT tag. If the Flash Player is assigned the
name theMovie, the JavaScript function called is theMovie_Dofscommand.

Player

Flash 3 or later.

function
Syntax

function functionname ([argument0, argument1,...argumentN]){
statement(s)
}
function ([argument0, argument1,...argumentN]){
statement(s)
}

Arguments

functionname The name of the new function.

argument Zero or more strings, numbers, or objects to pass the function.

statements Zero or more ActionScript statements you have defined for the
body of the function.

Description

Action; a set of statements that you define to perform a certain task. You can
declare, or define, a function in one location and call, or invoke, it from different
scripts in a movie. When you define a function, you can also specify arguments for
the function. Arguments are placeholders for values on which the function will
operate. You can pass a function different arguments, also called parameters, each
time you call it.

Use the return action in a functions statement(s) to cause a function to return,
or generate, a value.
ActionScript Dictionary 267

Usage 1: Declares a function with the specified functionname, arguments, and
statement(s). When a function is called, the function declaration is invoked.
Forward referencing is permitted; within the same Action list, a function may be
declared after it is called. A function declaration replaces any prior declaration of
the same function. You can use this syntax wherever a statement is permitted.

Usage 2: Creates an anonymous function and returns it. This syntax is used in
expressions, and is particularly useful for installing methods in objects.

Player

Flash 5 or later.

Example

(Usage 1) The following example defines the function sqr, which accepts one
argument, and returns the square(x*x) of the argument. Note that if the
function is declared and used in the same script, the function declaration may
appear after using the function.

y=sqr(3);
function sqr(x) {
return x*x;
}

(Usage 2) The following function defines a Circle object:

function Circle(radius) {
this.radius = radius;

}

The following statement defines an anonymous function that calculates the area
of a circle and attaches it to the object Circle as a method:

Circle.prototype.area = function () {return Math.PI * this.radius
* this.radius}
Chapter 7268

ge (greater than or equal to—string specific)
Syntax

expression1 ge expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is greater than or equal to expression2; otherwise,
returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new >=
operator is recommended.

See also

>= (greater than or equal to)

getProperty
Syntax

getProperty(instancename , property);

Arguments

instancename The instance name of a movie clip for which the property is
being retrieved.

property A property of a movie clip, such as an x or y coordinate.

Description

Function; returns the value of the specified property for the movie clip instance.

Player

Flash 4 or later.

Example

The following example retrieves the horizontal axis coordinate (_x) for the
movie clip myMovie:

getProperty(_root.myMovie_item._x);
ActionScript Dictionary 269

getTimer
Syntax

getTimer();

Arguments

None.

Description

Function; returns the number of milliseconds that have elapsed since the movie
started playing.

Player

Flash 4 or later.
Chapter 7270

getURL
Syntax

getURL(url [, window [, variables]]);

Arguments

url The URL from which to obtain the document. The URL must be in the
same subdomain as the URL where the movie currently resides.

window An optional argument specifying the window or HTML frame that the
document should be loaded into. Enter the name of a specific window or choose
from the following reserved target names:

• _self specifies the current frame in the current window.

• _blank specifies a new window.

• _parent specifies the parent of the current frame.

• _top specifies the top-level frame in the current window.

variables An optional argument specifying a method for sending variables. If
there are no variables, omit this argument; otherwise, specify whether to load
variables using a GET or POST method. GET appends the variables to the end of the
URL, and is used for small numbers of variables. POST sends the variables in a
separate HTTP header and is used for long strings of variables.

Description

Action; loads a document from a specific URL into a window, or passes variables
to another application at a defined URL. To test this action, make sure the file to
be loaded is at the specified location. To use an absolute URL (for example,
http://www.myserver.com), you need a network connection.

Player

Flash 2 or later. The GET and POST options are only available to Flash 4 and
later versions of the Player.

Example

This example loads a new URL into a blank browser window. The getURL action
targets the variable incomingAd as the url parameter so that you can change the
loaded URL without having to edit the Flash movie. The incomingAd variable’s
value is passed into Flash earlier in the movie using a loadVariables action.

on(release) {
getURL(incomingAd, "_blank");

}

See also

loadVariables
XML.send
XML.sendAndLoad
XMLSocket.send
ActionScript Dictionary 271

getVersion
Syntax

getVersion();

Arguments

None.

Description

Function; returns a string containing Flash Player version and platform
information.

This function does not work in test-movie mode, and will only return
information for versions 5 or later of the Flash Player.

Example

The following is an example of a string returned by the getVersion function:

WIN 5,0,17,0

This indicates that the platform is Windows, and the version number of the Flash
Player is major version 5, minor version 17(5.0r17).

Player

Flash 5 or later.

gotoAndPlay
Syntax

gotoAndPlay(scene, frame);

Arguments

scene The scene name to which the playhead is sent.

frame The frame number to which the playhead is sent.

Description

Action; sends the playhead to the specified frame in a scene and plays from that
frame. If no scene is specified, the playhead goes to the specified frame in the
current scene.

Player

Flash 2 or later.

Example

When the user clicks a button that the gotoAndPlay action is assigned to, the
playhead is sent to frame 16 and starts to play.

on(release) {
gotoAndPlay(16);

}

Chapter 7272

gotoAndStop
Syntax

gotoAndStop(scene, frame);

Arguments

scene The scene name to which the playhead is sent.

frame The frame number to which the playhead is sent.

Description

Action; sends the playhead to the specified frame in a scene and stops it. If no
scene is specified, the playhead is sent to the frame in the current scene.

Player

Flash 2 or later.

Example

When the user clicks a button that the gotoAndStop action is assigned to, the
playhead is sent to frame 5 and the movie stops playing.

on(release) {
gotoAndStop(5);

}

gt (greater than —string specific)
Syntax

expression1 gt expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is greater than expression2; otherwise, returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new >
operator is recommended.

See also

> (greater than)
ActionScript Dictionary 273

_height
Syntax

instancename._height
instancename._height = value;

Arguments

instancename An instance name of a movie clip for which the _height
property is to be set or retrieved.

value An integer specifying the height of the movie in pixels.

Description

Property; sets and retrieves the height of the space occupied by a movie’s content.
In previous versions of Flash, _height and _width were read-only properties; in
Flash 5 these properties can be set.

Player

Flash 4 or later.

Example

The following code example sets the height and width of a movie clip when the
user clicks the mouse:

onClipEvent(mouseDown) {
_width=200;
_height=200;

}

_highquality
Syntax

_highquality = value;

Arguments

value The level of anti-aliasing applied to the movie. Specify 2 (BEST) to apply
high quality with bitmap smoothing always on. Specify 1 (high quality) to apply
anti-aliasing; this will smooth bitmaps if the movie does not contain animation.
Specify 0 (low quality) to prevent anti-aliasing.

Description

Property (global); specifies the level of anti-aliasing applied to the current movie.

Player

Flash 4 or later.

See also

_quality
toggleHighQuality
Chapter 7274

if
Syntax

if(condition) {
statement;
}

Arguments

conditional An expression that evaluates to true or false. For example,
if(name == "Erica"), evaluates the variable name to see if it is "Erica."

statements The instructions to execute if or when the condition evaluates to
true.

Description

Action; evaluates a condition to determine the next action in a movie. If the
condition is true, Flash runs the statements that follow. Use if to create
branching logic in your scripts.

Player

Flash 4 or later.

See also

else
for
for..in
ActionScript Dictionary 275

ifFrameLoaded
Syntax

ifFrameLoaded(scene, frame) {
statement;}

ifFrameLoaded(frame) {
statement;}

Arguments

scene The scene that is being queried.

frame The frame number or frame label to load before the next statement
is executed.

Description

Action; checks whether the contents of a specific frame are available locally. Use
ifFrameLoaded to start playing a simple animation while the rest of the movie
downloads to the local computer. The difference between using _framesloaded
and ifFrameLoaded is that _framesloaded allows you to add if, or else
statements, while ifFrameLoaded action allows you to specify a number of frames
in one simple statement.

Player

Flash 3 or later. The ifFrameLoaded action is deprecated in Flash 5; use of the
_framesloaded action is encouraged.

See also

_framesloaded

#include
Syntax

#include "filename.as";

Arguments

filename.as The filename to include; .as is the recommended file extension.

Description

Action; includes the contents of the file specified in the argument when the movie
is tested, published, or exported. The #include action is invoked when you test,
publish, or export. The #include action is checked when a syntax check occurs.

Player

N/A
Chapter 7276

Infinity
Syntax

Infinity

Arguments

None.

Description

Top-level variable; a predefined variable with the ECMA-262 value for infinity.

Player

Flash 5 or later.

int
Syntax

int(value);

Arguments

value A number to be rounded to an integer.

Description

Function; converts a decimal number to the closest integer value.

Player

Flash 4 or later. This function has been deprecated in Flash 5; use of the
Math.floor method is recommended.

See also

Math.floor
ActionScript Dictionary 277

isFinite
Syntax

isFinite(expression);

Arguments

expression The Boolean, variable, or other expression to be evaluated.

Description

Top-level function; evaluates the argument and returns true if it is a finite
number, and false if it is infinity or negative infinity. The presence of infinity or
negative infinity indicates a mathematical error condition such as division by 0.

Player

Flash 5 or later.

Example

The following are examples of return values for isFinite:

isFinite(56) returns true

isFinite(Number.POSITIVE_INFINITY) returns false

isNaN(Number.POSITIVE_INFINITY) returns false

isNaN
Syntax

isNaN(expression);

Arguments

expression The Boolean, variable, or other expression to be evaluated.

Description

Top-level function; evaluates the argument and returns true if the value is not a
number (NaN), indicating the presence of mathematical errors.

Player

Flash 5 or later.

Example

The following illustrates the return value for isNan:

isNan("Tree") returns true

isNan(56) returns false

isNaN(Number.POSITIVE_INFINITY) returns false
Chapter 7278

Key (object)
The Key object is a top-level object that you can access without using a
constructor. Use the methods for the Key object to build an interface that can be
controlled by a user with a standard keyboard. The properties of the Key object
are constants representing the keys most commonly used to control games. See
Appendix B, "Keyboard Keys and Key Code Values," for a complete list of key
code values.

Example

onClipEvent (enterFrame) {
if(Key.isDown(Key.RIGHT)) {

setProperty ("", _x, _x+10);
}

}
or
onClipEvent (enterFrame) {

if(Key.isDown(39)) {
setProperty("", _x, _x+10);

}
}

Method summary for the Key object

Method Description

getAscii; Returns the ASCII value of the last key pressed.

getCode; Returns the virtual key code of the last key pressed.

isDown; Returns true if the key specified in the argument is pressed.

isToggled; Returns true if the Num Lock or Caps Lock key is activated.
ActionScript Dictionary 279

Property summary for the Key object

All of the properties for the Key object are constants.

Property Description

BACKSPACE Constant associated with the key code value for the
Backspace key (9).

CAPSLOCK Constant associated with the key code value for the
Caps Lock key (20).

CONTROL Constant associated with the key code value for the
Control key (17).

DELETEKEY Constant associated with the key code value for the
Delete key (46).

DOWN Constant associated with the key code value for the
Down Arrow key (40).

END Constant associated with the key code value for the End key (35).

ENTER Constant associated with the key code value for the Enter key (13).

ESCAPE Constant associated with the key code value for the
Escape key (27).

HOME Constant associated with the key code value for the
Home key (36).

INSERT Constant associated with the key code value for the
Insert key (45).

LEFT Constant associated with the key code value for the
Left Arrow key (37).

PGDN Constant associated with the key code value for the
Page Down key (34).

PGUP Constant associated with the key code value for the
Page Up key (33).

RIGHT Constant associated with the key code value for the
Right Arrow key (39).

SHIFT Constant associated with the key code value for the Shift key (16).

SPACE Constant associated with the key code value for the
Spacebar (32).

TAB Constant associated with the key code value for the Tab key (9).

UP Constant associated with the key code value for the
Up Arrow key (38).
Chapter 7280

Key.BACKSPACE
Syntax

Key.BACKSPACE

Arguments

None.

Description

Property; constant associated with the key code value for the Backspace key (9).

Player

Flash 5 or later.

Key.CAPSLOCK
Syntax

Key.CAPSLOCK

Arguments

None.

Description

Property; constant associated with the key code value for the Caps Lock key (20).

Player

Flash 5 or later.

Key.CONTROL
Syntax

Key.CONTROL

Arguments

None.

Description

Property; constant associated with the key code value for the Control key (17).

Player

Flash 5 or later.
ActionScript Dictionary 281

Key.DELETEKEY
Syntax

Key.DELETEKEY

Arguments

None.

Description

Property; constant associated with the key code value for the Delete key (46).

Player

Flash 5 or later.

Key.DOWN
Syntax

Key.DOWN

Arguments

None.

Description

Property; constant associated with the key code value for the Down Arrow key
(40).

Player

Flash 5 or later.

Key.END
Syntax

Key.END

Arguments

None.

Description

Property; constant associated with the key code value for the End key (35).

Player

Flash 5 or later.
Chapter 7282

Key.ENTER
Syntax

Key.ENTER

Arguments

None.

Description

Property; constant associated with the key code value for the Enter key (13).

Player

Flash 5 or later.

Key.ESCAPE
Syntax

Key.ESCAPE

Arguments

None.

Description

Property; constant associated with the key code value for the Escape key (27).

Player

Flash 5 or later.

Key.getAscii
Syntax

Key.getAscii();

Arguments

None.

Description

Method; returns the ASCII code of the last key pressed or released.

Player

Flash 5 or later.
ActionScript Dictionary 283

Key.getCode
Syntax

Key.getCode();

Arguments

None.

Description

Method; returns the key code value of the last key pressed. Use the information in
Appendix B, "Keyboard Keys and Key Code Values," to match the returned key
code value with the virtual key on a standard keyboard.

Player

Flash 5 or later.

Key.HOME
Syntax

Key.HOME

Arguments

None.

Description

Property; constant associated with the key code value for the Home key (36).

Player

Flash 5 or later.

Key.INSERT
Syntax

Key.INSERT

Arguments

None.

Description

Property; constant associated with the key code value for the Insert key (45).

Player

Flash 5 or later.
Chapter 7284

Key.isDown
Syntax

Key.isDown(keycode);

Arguments

keycode The key code value assigned to a specific key, or a Key object property
associated with a specific key. Appendix B, "Keyboard Keys and Key Code
Values," lists all of the key codes associated with the keys on a standard keyboard.

Description

Method; returns true if the key specified in keycode is pressed. On the
Macintosh, the key code values for the Caps Lock and Num Lock keys are
identical.

Player

Flash 5 or later.

Key.isToggled
Syntax

Key.isToggled(keycode)

Arguments

keycode The key code for Caps Lock (20) or Num Lock (144).

Description

Method; returns true if the Caps Lock or Num Lock key is activated (toggled).
On the Macintosh, the key code values for these keys are identical.

Player

Flash 5 or later.

Key.LEFT
Syntax

Key.LEFT

Arguments

None.

Description

Property; constant associated with the key code value for the Left Arrow key (37).

Player

Flash 5 or later.
ActionScript Dictionary 285

Key.PGDN
Syntax

Key.PGDN

Arguments

None.

Description

Property; constant associated with the key code value for the Page Down key (34).

Player

Flash 5 or later.

Key.PGUP
Syntax

Key.PGUP

Arguments

None.

Description

Property; constant associated with the key code value for the Page Up key (33).

Player

Flash 5 or later.

Key.RIGHT
Syntax

Key.RIGHT

Arguments

None.

Description

Property; constant associated with the key code value for the Right Arrow key
(39).

Player

Flash 5 or later.
Chapter 7286

Key.SHIFT
Syntax

Key.SHIFT

Arguments

None.

Description

Property; constant associated with the key code value for the Shift key (16).

Player

Flash 5 or later.

Key.SPACE
Syntax

Key.SPACE

Arguments

None.

Description

Property; constant associated with the key code value for the Spacebar (32).

Player

Flash 5 or later.

Key.TAB
Syntax

Key.TAB

Arguments

None.

Description

Property; constant associated with the key code value for the Tab key (9).

Player

Flash 5 or later.
ActionScript Dictionary 287

Key.UP
Syntax

Key.UP

Arguments

None.

Description

Property; constant associated with the key code value for the Up Arrow key (38).

Player

Flash 5 or later.

le (less than or equal to — string specific)
Syntax

expression1 le expression2

Arguments

expression1,expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and
returns true if expression1 is less than or equal to expression2;
otherwise, returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new <=
operator is recommended.

See also

<= (less than or equal to)
Chapter 7288

length
Syntax

length(expression);
length(variable);

Arguments

expression Any string.

variable The name of a variable.

Description

String function; returns the length of the specified string or variable name.

Player

Flash 4 or later. This function, along with all of the string functions, has been
deprecated in Flash 5. It is recommended that you use the methods and length
property of the String object to perform the same operations.

Example

The following example returns the value of the string Hello:

length("Hello");

The result is 5.

See also

" " (string delimiter)
String.length
ActionScript Dictionary 289

_level
Syntax

_levelN;

Arguments

N A nonnegative integer specifying a depth level. By default, _level is set to 0,
the movie at the base of the hierarchy.

Description

Property; a reference to the root movie Timeline of levelN. You must load movies
using the loadMovie action, before targeting them using the _level property.

In the Flash Player, movies are assigned a number according to the order in which
they were loaded. The movie that was loaded first is loaded at the bottom level,
level 0. The movie in level 0 sets the frame rate, background color, and frame size
for all subsequently loaded movies. Movies are then stacked in higher numbered
levels above the movie in level 0. The level where a movie clip resides is also
referred to as the depth level or depth.

Player

Flash 4 or later.

Example

The following example stops the Timeline of the movie in level 0:

_level0.stop();

The following example sends the Timeline of the movie in level 4 to frame 5. The
movie in level 4 must have previously been loaded with a loadMovie action:

_level4.gotoAndStop(5);

See also

loadMovie
MovieClip.swapDepths
Chapter 7290

loadMovie
Syntax

loadMovie(url [,location/target, variables]]);

Arguments

url An absolute or relative URL for the SWF file to load. A relative path must
be relative to the SWF. The URL must be in the same subdomain as the URL
where the movie currently resides. For use in the Flash Player or for testing in
test-movie mode in the Flash authoring environment, all SWF files must be
stored in the same folder, and the file names cannot include folder or disk
drive specifications.

target An optional argument specifying a target movie clip that will be replaced
by the loaded movie. The loaded movie inherits the position, rotation, and scale
properties of the targeted movie clip. Specifying a target is the same as specifying
the location (level) of a target movie; you should not specify both.

location An optional argument specifying the level into which the movie is
loaded. The loaded movie inherits the position, rotation, and scale properties of
the targeted movie clip. To load the new movie in addition to existing movies,
specify a level that is not occupied by another movie. To replace an existing movie
with the loaded movie, specify a level that is currently occupied by another movie.
To replace the original movie and unload every level, load the new movie into
level 0. The movie in level 0 sets the frame rate, background color, and frame size
for all other loaded movies.

variables An optional argument specifying a method for sending variables
associated with the movie to load. The argument must be the string "GET" or
"POST." If there are no variables, omit this argument; otherwise, specify whether
to load variables using a GET or POST method. GET appends the variables to the
end of the URL, and is used for small numbers of variables. POST sends the
variables in a separate HTTP header and is used for long strings of variables.

Description

Action; plays additional movies without closing the Flash Player. Normally, the
Flash Player displays a single Flash Player movie (SWF file) and then closes. The
loadMovie action lets you display several movies at once or switch between
movies without loading another HTML document.

You can load movies into level that already have SWF files loaded. If you do,
the new movie will replace the existing SWF file. If you load a new movie into
Level 0, every level is unloaded, and Level 0 is replaced with the new file. Use
the loadVariables action to keep the active movie, and update the variables
with new values.

Use the unloadMovie action to remove movies loaded with the
loadMovie action.

Player

Flash 3 or later.
ActionScript Dictionary 291

Example

This loadMovie statement is attached to a navigation button labeled Products.
There is an invisible movie clip on the Stage with the instance name dropZone.
The loadMovie action uses this movie clip as the target parameter to load the
products in the SWF file, into the correct position on the Stage:

on(release) {
loadMovie("products.swf",_root.dropZone);

}

See also

unloadMovie
_level

loadVariables
Syntax

loadVariables (url ,location [, variables]);

Arguments

url An absolute or relative URL where the variables are located. The host
for the URL must be in the same subdomain as the movie when accessed using
a Web browser.

location A level or target to receive the variables. In the Flash Player, movie
files are assigned a number according to the order in which they were loaded. The
first movie loads into the bottom level (level 0). Inside the loadMovie action, you
must specify a level number for each successive movie. This argument is optional.

variables An optional argument specifying a method for sending variables. If
there are no variables, omit this argument; otherwise, specify whether to load
variables using a GET or POST method. GET appends the variables to the end of the
URL and is used for small numbers of variables. POST sends the variables in a
separate HTTP header and is used for long strings of variables.

Description

Action; reads data from an external file, such as a text file or text generated by a
CGI script, Active Server Pages (ASP), or Personal Home Page (PHP), and sets the
values for variables in a movie or movie clip. This action can also be used to
update variables in the active movie with new values.

The text at the specified URL must be in the standard MIME format
application/x-www-urlformencoded (a standard format used by CGI scripts).
The movie and the variables to be loaded must reside at the same subdomain.
Any number of variables can be specified. For example, the phrase below defines
several variables:

company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94
103
Chapter 7292

Player

Flash 4 or later.

Example

This example loads information from a text file into text fields in the main
Timeline (level 0). The variable names of the text fields must match the variable
names in the data.txt file.

on(release) {
loadVariables("data.txt", 0);

}

See also

getURL
MovieClip.loadMovie
MovieClip.loadVariables

lt (less than — string specific)
Syntax

expression1 lt expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is less than expression2; otherwise, returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new <
(less than) operator is recommended.

See also

< (less than)
ActionScript Dictionary 293

Math (object)
The Math object is a top-level object that you can access without using
a constructor.

Use the methods and properties of this object to access and manipulate
mathematical constants and functions. All of the properties and methods
of the Math object are static, and must be called using the syntax
Math.method(argument) or Math.constant. In ActionScript, constants
are defined with the maximum precision of double-precision IEEE-754
floating-point numbers.

The Math object is fully supported in the Flash 5 Player. In the Flash 4 Player,
methods of the Math object work, but they are emulated using approximations
and may not be as accurate as the non-emulated math functions supported by
the Flash 5 Player.

Several of the Math object methods take the radian of an angle as an argument.
You can use the equation below to calculate radian values, or simply pass the
equation (entering a value for degrees) for the radian argument.

To calculate a radian value, use this formula:

radian = Math.PI/180 * degree

The following is an example of passing the equation as an argument to calculate
the sine of a 45-degree angle:

Math.SIN(Math.PI/180 * 45) is the same as Math.SIN(.7854)
Chapter 7294

Method summary for the Math object

Method Description

abs Computes an absolute value.

acos Computes an arc cosine.

asin Computes an arc sine.

atan Computes an arc tangent.

atan2 Computes an angle from the x-axis to the point.

ceil Rounds a number up to the nearest integer.

cos Computes a cosine.

exp Computes an exponential value.

floor Rounds a number down to the nearest integer.

log Computes a natural logarithm.

max Returns the larger of the two integers.

min Returns the smaller of the two integers.

pow Computes x raised to the power of the y.

random Returns a pseudo-random number between 0.0 and 1.0.

round Rounds to the nearest integer.

sin Computes a sine.

sqrt Computes a square root.

tan Computes a tangent.
ActionScript Dictionary 295

Property summary for the Math object

All of the properties for the Math object are constants.

Math.abs
Syntax

Math.abs(x);

Arguments

x Any number.

Description

Method; computes and returns an absolute value for the number specified by
the argument x.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Property Description

E Euler's constant and the base of natural logarithms
(approximately 2.718).

LN2 The natural logarithm of 2 (approximately 0.693).

LOG2E The base 2 logarithm of e (approximately 1.442).

LN10 The natural logarithm of 10 (approximately 2.302).

LOG10E The base 10 logarithm of e (approximately 0.434).

PI The ratio of the circumference of a circle to its diameter
(approximately 3.14159).

SQRT1_2 The reciprocal of the square root of 1/2 (approximately 0.707).

SQRT2 The square root of 2 (approximately 1.414).
Chapter 7296

Math.acos
Syntax

Math.acos(x);

Arguments

x A number from -1.0 to 1.0.

Description

Method; computes and returns the arc cosine of the number specified in the
argument x, in radians.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.asin
Syntax

Math.asin(x);

Arguments

x A number from -1.0 to 1.0.

Description

Method; computes and returns the arc sine for the number specified in the
argument x, in radians.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
ActionScript Dictionary 297

Math.atan
Syntax

Math.atan(x);

Arguments

x Any number.

Description

Method; computes and returns the arc tangent for the number specified in the
argument x. The return value is between negative pi divided by 2, and positive
pi divided by 2.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.atan2
Syntax

Math.atan2(y, x);

Arguments

x A number specifying the x coordinate of the point.

y A number specifying the y coordinate of the point.

Description

Method; computes and returns the arc tangent of y/x in radians. The return value
represents the angle opposite the opposite angle of a right triangle, where x is the
adjacent side length and y is the opposite side length.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
Chapter 7298

Math.ceil
Syntax

Math.ceil(x);

Arguments

x A number or expression.

Description

Method; returns the ceiling of the specified number or expression. The ceiling of a
number is the closest integer that is greater than or equal to the number.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.cos
Syntax

Math.cos(x);

Arguments

x An angle measured in radians.

Description

Method; returns the cosine (a value from -1.0 to 1.0) of the angle specified by
the argument x. The angle x must be specified in radians. Use the information
outlined in the introduction to the Math object to calculate a radian.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
ActionScript Dictionary 299

Math.E
Syntax

Math.E

Arguments

None.

Description

Constant; a mathematical constant for the base of natural logarithms, expressed as
e. The approximate value of e is 2.71828.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.exp
Syntax

Math.exp(x);

Arguments

x The exponent; a number or expression.

Description

Method; returns the value of the base of the natural logarithm (e), to the power
of the exponent specified in the argument x. The constant Math.E can provide
the value of e.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
Chapter 7300

Math.floor
Syntax

Math.floor(x);

Arguments

x A number or expression.

Description

Method; returns the floor of the number or expression specified in the argument
x. The floor is the closest integer that is less than or equal to the specified number
or expression.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Example

The following returns a value of 12:

Math.floor(12.5);

Math.log
Syntax

Math.log(x);

Arguments

x A number or expression with a value greater than 0.

Description

Method; returns the natural logarithm of the argument x.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
ActionScript Dictionary 301

Math.LOG2E
Syntax

Math.LOG2E

Arguments

None.

Description

Constant; a mathematical constant for the base-2 logarithm of the constant e
(Math.E), expressed as loge2, with an approximate value of
1.442695040888963387.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.LOG10E
Syntax

Math.LOG10E

Arguments

None.

Description

Constant; a mathematical constant for the base-10 logarithm of the constant e
(Math.E), expressed as log10e, with an approximate value of
0.43429448190325181667.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
Chapter 7302

Math.LN2
Syntax

Math.LN2

Arguments

None.

Description

Constant; a mathematical constant for the natural logarithm of 2, expressed as
loge2, with an approximate value of 0.69314718055994528623.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.LN10
Syntax

Math.LN10

Arguments

None.

Description

Constant; a mathematical constant for the natural logarithm of 10, expressed as
loge10, with an approximate value of 2.3025850929940459011.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
ActionScript Dictionary 303

Math.max
Syntax

Math.max(x , y);

Arguments

x A number or expression.

y A number or expression.

Description

Method; evaluates x and y and returns the larger value.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.min
Syntax

Math.min(x , y);

Arguments

x A number or expression.

y A number or expression.

Description

Method; evaluates x and y and returns the smaller value.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
Chapter 7304

Math.PI
Syntax

Math.PI

Arguments

None.

Description

Constant; a mathematical constant for the ratio of the circumference of a circle to
its diameter, expressed as pi, with a value of 3.14159265358979.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.pow
Syntax

Math.pow(x , y);

Arguments

x A number to be raised to a power.

y A number specifying a power the argument x is raised to.

Description

Method; computes and returns x to the power of y, xy.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
ActionScript Dictionary 305

Math.random
Syntax

Math.random();

Arguments

None.

Description

Method; returns a pseudo-random number between 0.0 and 1.0.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

See also

random

Math.round
Syntax

Math.round(x);

Arguments

x Any number.

Description

Method; rounds the value of the argument x up or down to the nearest integer
and returns the value.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
Chapter 7306

Math.sin
Syntax

Math.sin(x);

Arguments

x An angle measured in radians.

Description

Method; computes and returns the sine of the specified angle in radians. Use the
information outlined in the introduction to the Math object to calculate a radian.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

See also

Math (object)

Math.sqrt
Syntax

Math.sqrt(x);

Arguments

x Any number or expression greater than or equal to 0.

Description

Method; computes and returns the square root of the specified number.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
ActionScript Dictionary 307

Math.SQRT1_2
Syntax

Math.SQRT1_2

Arguments

None.

Description

Constant; a mathematical constant for the reciprocal of the square root of one half
(1/2), with an approximate value of 0.707106781186.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

Math.SQRT2
Syntax

Math.SQRT2

Arguments

None.

Description

Constant; a mathematical constant for the square root of 2, with an approximate
value of 1.414213562373.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.
Chapter 7308

Math.tan
Syntax

Math.tan(x);

Arguments

x An angle measured in radians.

Description

Method; computes and returns the tangent of the specified angle. Use the
information outlined in the introduction to the Math object to calculate a radian.

Player

Flash 5 or later. In the Flash 4 Player, the methods and properties of the Math
object are emulated using approximations and may not be as accurate as the
non-emulated math functions supported by the Flash 5 Player.

maxscroll
Syntax

variable_name.maxscroll = x

Arguments

variable_name The name of a variable associated with a text field.

x The line number that is the maximum value allowed for the scroll property,
based on the height of the text field. This is a read-only value set by Flash.

Description

Property; a read-only property that works with the scroll property to control
the display of information in a text field. This property can be retrieved, but
not modified.

Player

Flash 4 or later.

See also

scroll
ActionScript Dictionary 309

mbchr
Syntax

mbchr(number);

Arguments

number The number to convert to a multibyte character.

Description

String function; converts an ASCII code number to a multibyte character.

Player

Flash 4 or later. This function has been deprecated in Flash 5; use of
String.fromCharCode method is encouraged.

See also

String.fromCharCode

mblength
Syntax

mblength(string);

Arguments

string A string.

Description

String function; returns the length of the multibyte character string.

Player

Flash 4 or later. This function has been deprecated in Flash 5; use of the String
object and methods is recommended.
Chapter 7310

mbord
Syntax

mbord(character);

Arguments

character The character to convert to a multibyte number.

Description

String function; converts the specified character to a multibyte number.

Player

Flash 4 or later. This function has been deprecated in Flash 5; use of the
String.charCodeAt method is recommended.

See also

String.fromCharCode

mbsubstring
Syntax

mbsubstring(value, index, count);

Arguments

value The multibyte string from which to extract a new multibyte string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not
including the index character.

Description

String function; extracts a new multibyte character string from a multibyte
character string.

Player

Flash 4 or later. This function is deprecated in Flash 5; use of the string.substr
method is recommended.

See also

String.substr
ActionScript Dictionary 311

Mouse (object)
Use the methods of the Mouse object to hide and show the cursor in the movie.
The mouse pointer is visible by default, but you can hide it and implement a
custom cursor that you create using a movie clip.

Mouse method summary

Mouse.hide
Syntax

Mouse.hide();

Arguments

None.

Description

Method; hides the cursor in a movie. The cursor is visible by default.

Player

Flash 5 or later.

Example

The following code, attached to a movie clip on the main Timeline, hides the
standard cursor and sets the x and y positions of the customCursor movie clip
instance to the x and y mouse positions in the main Timeline:

onClipEvent(enterFrame){
Mouse.hide();
customCursorMC_x = _root._xmouse;
customCursorMC_y = _root._ymouse;

}

See also

_xmouse
_ymouse
Mouse.show

Method Description

hide Hides the cursor in the movie.

show Displays the cursor in the movie.
Chapter 7312

Mouse.show
Syntax

Mouse.show();

Arguments

None.

Description

Method; makes the cursor visible in a movie. The cursor is visible by default.

Player

Flash 5 or later.

See also

_xmouse
_ymouse
Mouse.show

MovieClip (object)
The methods for the MovieClip object privide the same functionality as the
standard actions that target movie clips. There are also additional methods that
provide functionality that is not available using the standard actions listed in the
Actions category of the Actions panel. You do not need to use a constructor
method in order to call the methods of the MovieClip object; instead, you
reference movie clip instances by name, using the following syntax:

anyMovieClip.play();
anyMovieClip.gotoAndPlay(3);
ActionScript Dictionary 313

Method summary for the MovieClip object

Method Description

attachMovie Attaches a movie in the library.

duplicateMovieClip Duplicates the specified movie clip.

getBounds Returns the minimum and maximum x and y coordinates of
a movie in a specified coordinate space.

getBytesLoaded Returns the number of bytes loaded for the specified
movie clip.

getBytesTotal Returns the size of the movie clip in bytes.

getURL Retrieves a document from a URL.

globalToLocal Converts the point object from Stage coordinates to the
local coordinates of the specified movie clip.

gotoAndPlay Sends the playhead to a specific frame in the movie clip
and plays the movie.

gotoAndStop Sends the playhead to a specific frame in the movie clip
and stops the movie.

hitTest Returns true if bounding box of the specified movie clip
intersects the bounding box of the target movie clip.

loadMovie Loads the specified movie into the movie clip.

loadVariables Loads variables from a URL or other location into the
movie clip.

localToGlobal Converts a Point object from the local coordinates of the
movie clip to the global Stage coordinates.

nextFrame Sends the playhead to the next frame of the movie clip.

play Plays the specified movie clip.

prevFrame Sends the playhead to the previous frame of the
movie clip.

removeMovieclip Removes the movie clip from the Timeline if it was created
with a duplicateMovieClip action or method or the
attachMovie method.

startDrag Specifies a movie clip as draggable and begins dragging
the movie clip.

stop Stops the currently playing movie.

stopDrag Stops the dragging of any movie clip that is being dragged.

swapDepths Swaps the depth level of specified movie with the movie at
a specific depth level.

unloadMovie Removes a movie loaded with loadMovie.
Chapter 7314

MovieClip.attachMovie
Syntax

anyMovieClip.attachMovie(idName, newname, depth);

Arguments

idName The name of the movie in the library to attach. This is the name entered
in the Identifier field in the Symbol Linkage Properties dialog box.

newname A unique instance name for the movie clip being attached.

depth An integer specifying the depth level where the movie is placed.

Description

Method; creates a new instance of a movie in the library and attaches it to the
movie specified by anyMovieClip. Use the removeMovieClip or unloadMovie
action or method to remove a movie attached with attachMovie.

Player

Flash 5 or later.

See also

removeMovieClip
unloadMovie
MovieClip.removeMovieClip
MovieClip.unloadMovie
ActionScript Dictionary 315

MovieClip.duplicateMovieClip
Syntax

anyMovieClip.duplicateMovieClip(newname, depth);

Arguments

newname A unique identifier for the duplicate movie clip.

depth A number specifying the depth level where the movie specified is
to be placed.

Description

Method; creates an instance of the specified movie clip while the movie is playing.
Duplicated movie clips always start playing at frame 1, no matter what frame the
original movie clip is on when the duplicateMovieClip method is called.
Variables in the parent movie clip are not copied into the duplicate movie clip. If
the parent movie clip is deleted the duplicate movie clip is also deleted. Movie
clips added with duplicateMovieClip can be deleted with removeMovieClip
action or method.

Player

Flash 5 or later.

See also

removeMovieClip
MovieClip.removeMovieClip
Chapter 7316

MovieClip.getBounds
Syntax

anyMovieClip.getBounds(targetCoordinateSpace);

Arguments

targetCoordinateSpace The target path of the Timeline whose coordinate
space you want to use as a reference point.

Description

Method; returns the minimum and maximum x and y coordinate values of the
MovieClip for the target coordinate space specified in the argument. The return
object will contain the properties {xMin, xMax, yMin, yMax}. Use the
localToGlobal and globalToLocal methods of the MovieClip object to convert
the movie clip’s local coordinates to Stage coordinates, or Stage coordinates to
local coordinates respectively.

Player

Flash 5 or later.

Example

The following example uses getBounds to retrieve the bounding box of the
myMovieClip instance in the coordinate space of the main movie:

myMovieClip.getBounds(._root);

See also

MovieClip.globalToLocal
MovieClip.localToGlobal

MovieClip.getBytesLoaded
Syntax

anyMovieClip.getBytesLoaded();

Arguments

None.

Description

Method; returns the number of bytes loaded (streamed) for the specified Movie
Clip object. Because internal movie clips load automatically, the return result
for this method and MovieClip.getBytesTotal will be the same if the specified
Movie Clip object references an internal movie clip. This method is intended
for use on loaded movies. You can compare the value of getBytesLoaded
with the value of getBytesTotal to determine what percentage of an external
movie has loaded.

Player

Flash 5 or later.
ActionScript Dictionary 317

MovieClip.getBytesTotal
Syntax

anyMovieClip.getBytesTotal();

Arguments

None.

Description

Method; returns the size, in bytes, of the specified Movie Clip object. For movie
clips that are external, (the root movie or a movie clip that is being loaded into a
target or a level) the return value is the size of the SWF file.

Player

Flash 5 or later.

MovieClip.getURL
Syntax

anyMovieClip.getURL(URL [,window, variables]]);

Arguments

URL The URL from which to obtain the document.

window An optional argument specifying the name, frame, or expression
specifying the window or HTML frame that the document is loaded into. You
can also use one of the following reserved target names: _self specifies the
current frame in the current window, _blank specifies a new window, _parent
specifies the parent of the current frame, _top specifies the top-level frame in
the current window.

variables An optional argument specifying a method for sending variables
associated with the movie to load. If there are no variables, omit this argument;
otherwise, specify whether to load variables using a GET or POST method. GET
appends the variables to the end of the URL, and is used for small numbers of
variables. POST sends the variables in a separate HTTP header and is used for long
strings of variables.

Description

Method; loads a document from the specified URL into the specified window.
The getURL method can also be used to pass variables to another application
defined at the URL using a GET or POST method.

Player

Flash 5 or later.
Chapter 7318

MovieClip.globalToLocal
Syntax

anyMovieClip.globalToLocal(point);

Arguments

point The name or identifier of an object created with the generic Object
object specifying the x and y coordinates as properties.

Description

Method; converts the point object from Stage (global) coordinates to the movie
clip’s (local) coordinates.

Player

Flash 5 or later.

Example

The following example converts the global x and y coordinates of the point object
to the local coordinates of the movie clip:

onClipEvent(mouseMove) {
point = new object();
point.x = _root._xmouse;
point.y = _root._ymouse;
globalToLocal(point);
_root.out = _xmouse + " === " + _ymouse;
_root.out2 = point.x + " === " + point.y;
updateAfterEvent();

}

See also

MovieClip.localToGlobal
MovieClip.getBounds

MovieClip.gotoAndPlay
Syntax

anyMovieClip.gotoAndPlay(frame);

Arguments

frame The frame number to which the playhead will be sent.

Description

Method; starts playing the movie at the specified frame.

Player

Flash 5 or later.
ActionScript Dictionary 319

MovieClip.gotoAndStop
Syntax

anyMovieClip.gotoAndStop(frame);

Arguments

frame The frame number to which the playhead will be sent.

Description

Method; stops the movie playing at the specified frame.

Player

Flash 5 or later.

MovieClip.hitTest
Syntax

anyMovieClip.hitTest(x, y, shapeFlag);
anyMovieClip.hitTest(target);

Arguments

x The x coordinate of the hit area on the Stage.

y The y coordinate of the hit area on the Stage.

The x and y coordinates are defined in the global coordinate space.

target The target path of the hit area that may intersect or overlap with the
instance specified by anyMovieClip. The target usually represents a button or
text-entry field.

shapeFlag A Boolean value specifying whether to evaluate the entire shape of
the specified instance (true), or just the bounding box (false). This argument
can only be specified if the hit area is identified using x and y coordinate
arguments.

Description

Method; evaluates the instance specified by anyMovieClip to see if it overlaps
or intersects with the hit area identified by the target or x and y coordinate
arguments.

Usage 1compares the x and y coordinates to the shape or bounding box of the
specified instance, according to the shapeFlag setting. If shapeFlag is set to
true, only the area actually occupied by the instance on the Stage is evaluated,
and if x and y overlap at any point, a value of true is returned. This is useful for
determining if the movie clip is within a specified hit, or hotspot, area.

Usage 2 evaluates the bounding boxes of the target and specified instance, and
returns true if they overlap or intersect at any point.
Chapter 7320

Player

Flash 5 or later.

Example

The following example uses hitTest with the x_mouse and y_mouse properties
to determine whether the mouse is over the target’s bounding box:

if (hitTest(_root._xmouse, _root._ymouse, false));

The following example uses hitTest to determine if the movie clip ball overlaps
or intersects with the movie clip square:

if(_root.ball, hittest(_root.square)){
trace("ball intersects square");

}

See also

MovieClip.localToGlobal
MovieClip.globalToLocal
MovieClip.getBounds
ActionScript Dictionary 321

MovieClip.loadMovie
Syntax

anyMovieClip.loadMovie(url [,variables]);

Arguments

url An absolute or relative URL for the SWF file to load. A relative path must
be relative to the SWF. The URL must be in the same subdomain as the URL
where the movie currently resides. For use in the Flash Player or for testing in test-
movie mode in the Flash authoring environment, all SWF files must be stored in
the same folder, and the file names cannot include folder or disk drive
specifications.

variables An optional argument specifying a method for sending variables
associated with the movie to load. The argument must be the string "GET" or
"POST." If there are no variables, omit this argument; otherwise, specify whether
to load variables using a GET or POST method. GET appends the variables to the
end of the URL and is used for small numbers of variables. POST sends the
variables in a separate HTTP header and is used for long strings of variables.

Description

Method; plays additional movies without closing the Flash Player. Normally, the
Flash Player displays a single Flash Player movie (SWF file) and then closes. The
loadMovie method allows you display several movies at once or switch between
movies without loading another HTML document.

Use the unloadMovie action to remove movies loaded with the loadMovie
action.

Use the loadVariables method to keep the active movie, and update the
variables with new values.

Player

Flash 5 or later.

See also

MovieClip.loadVariables
MovieClip.unloadMovie
Chapter 7322

MovieClip.loadVariables
Syntax

anyMovieClip.loadVariables(url, variables);

Arguments

url The absolute or relative URL for the external file. The host for the URL
must be in the same subdomain as the movie clip.

variables The method for retrieving the variables. GET appends the variables
to the end of the URL, and is used for small numbers of variables. POST sends the
variables in a separate HTTP header and is used for long strings of variables.

Description

Method; reads data from an external file and sets the values for variables in a
movie or movie clip. The external file can be a text file generated by a CGI script,
Active Server Pages (ASP), or PHP, and can contain any number of variables.

This method can also be used to update variables in the active movie with
new values.

This method requires that the text at the URL be in the standard MIME format:
application/x-www-urlformencoded (CGI script format).

Player

Flash 5 or later.

See also

MovieClip.loadMovie
ActionScript Dictionary 323

MovieClip.localToGlobal
Syntax

anyMovieClip.localToGlobal(point);

Arguments

point The name or identifier of an object created with the Object object,
specifying the x and y coordinates as properties.

Description

Method; converts the point object from the movie clip’s (local) coordinates, to
Stage (global) coordinates.

Player

Flash 5 or later.

Example

The following example converts x and y coordinates of the point object, from the
movie clip’s coordinates (local) to the Stage coordinates (global). The local x and y
coordinates are specified using xmouse and ymouse to retrieve the x and y
coordinates of the mouse position.

onClipEvent(mouseMove) {
point = new object();
point.x = _xmouse;
point.y = _ymouse;
_root.out3 = point.x + " === " + point.y;
_root.out = _root._xmouse + " === " + _root._ymouse;
localToGlobal(point);
_root.out2 = point.x + " === " + point.y;
updateAfterEvent();

}

See also

MovieClip.globalToLocal

MovieClip.nextFrame
Syntax

anyMovieClip.nextFrame();

Arguments

None.

Description

Method; sends the playhead to the next frame of the movie clip.

Player

Flash 5 or later.
Chapter 7324

MovieClip.play
Syntax

anyMovieClip.play();

Arguments

None.

Description

Method; plays the movie clip.

Player

Flash 5 or later.

MovieClip.prevFrame
Syntax

anyMovieClip.prevFrame();

Arguments

None.

Description

Method; sends the playhead to the previous frame and stops it.

Player

Flash 5 or later.

MovieClip.removeMovieClip
Syntax

anyMovieClip.removeMovieClip();

Arguments

None.

Description

Method; removes a movie clip instance created with the duplicateMovieclip
action, or the duplicateMovieClip or attachMovie methods of the
MovieClip object.

Player

Flash 5 or later.

See also

MovieClip.loadMovie
MovieClip.attachMovie
ActionScript Dictionary 325

MovieClip.startDrag
Syntax

anyMovieClip.startDrag([lock, left, right, top, bottom]);

Arguments

lock A Boolean value specifying whether the draggable movie clip is locked to
the center of the mouse position (true), or locked to the point where the user first
clicked on the movie clip (false). This argument is optional.

left, top, right, bottom Values relative to the coordinates of the movie
clip’s parent that specify a constraint rectangle for the movie clip. These
arguments are optional.

Description

Method; allows the user to drag the specified movie clip. The movie remains
draggable until explicitly stopped by calling the stopDrag method, or until
another movie clip is made draggable. Only one movie clip is draggable at a time.

Player

Flash 5 or later.

See also

MovieClip.stopDrag
_droptarget

MovieClip.stop
Syntax

anyMovieClip.stop();

Arguments

None.

Description

Method; stops the movie clip currently playing.

Player

Flash 5 or later.
Chapter 7326

MovieClip.stopDrag
Syntax

anyMovieClip.stopDrag();

Arguments

None.

Description

Method; ends a drag action implemented with the startDrag method. A movie
remains draggable until a stopDrag method is added, or until another movie
becomes draggable. Only one movie clip is draggable at a time.

Player

Flash 5 or later.

See also

_droptarget
MovieClip.startDrag

MovieClip.swapDepths
Syntax

anyMovieClip.swapDepths(depth);
anyMovieClip.swapDepths(target);

Arguments

target The movie clip instance whose depth that is being swapped by the
instance specified in anyMovieClip. Both instances must have the same parent
movie clip.

depth A number specifying the depth level where the anyMovieClip is
to be placed.

Description

Method; swaps the stacking, or z, order (depth level) of the specified instance with
the movie specified by the target argument, or with the movie that currently
occupies the depth level specified in the argument. Both movies must have the
same parent movie clip. Swapping the depth level of movie clips has the effect of
moving one movie in front of or behind the other. If a movie is tweening when
this method is called, the tweening is stopped.

Player

Flash 5 or later.

See also

_level
ActionScript Dictionary 327

MovieClip.unloadMovie
Syntax

anyMovieClip.unloadMovie();

Arguments

None.

Description

Method; removes a movie clip loaded with the loadMovie or attachMovie
MovieClip methods.

Player

Flash 5 or later.

See also

MovieClip.loadMovie
MovieClip.attachMovie

_name
Syntax

instancename._name
instancename._name = value;

Arguments

instancename An instance name of a movie clip for which the _name property
is to be set or retrieved.

value A string that specifies a new instance name.

Description

Property; specifies the movie clip instance name.

Player

Flash 4 or later.
Chapter 7328

NaN
Syntax

NaN

Arguments

None.

Description

Variable; a predefined variable with the IEEE-754 value for NaN (Not a
Number).

Player

Flash 5 or later.

ne (not equal — string specific)
Syntax

expression1 ne expression2

Arguments

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns
true if expression1 is not equal to expression2; otherwise, returns false.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new !=
(not equal) operator is recommended.

See also

!= (inequality)
ActionScript Dictionary 329

new
Syntax

new constructor();

Arguments

constructor A function followed by any optional arguments in the
parentheses. The function is usually the name of the type of object (For example,
Array, Math, Number, Object) to be constructed.

Description

Operator; creates a new, initially anonymous object, calls the function identified
by the constructor argument, passes any optional arguments in the parentheses,
and passes the newly created object as a value of the keyword this. The
constructor function can then use this to instantiate the new object.

The _prototype_ property of the constructor function’s object is copied into the
proto property of the new object. As a result, the new object supports all of the
methods and properties specified in the constructor function’s Prototype object.

Player

Flash 5 or later.

Example

The following example creates the objects book1 and book2 using the
new operator.

function Book(name, price)
{

this.name = name;
this.price = price;

}
book1 = new Book("Confederacy of Dunces", 19.95);
book2 = new Book("The Floating Opera", 10.95);

See also

[] (array access operator)
{} (object initializer)

The constructor method section within an object entry.
Chapter 7330

newline
Syntax

newline;

Arguments

None.

Description

Constant; inserts a carriage return character ({) inserting a blank line into the
ActionScript code. Use newline to make space for information that is retrieved by
a function or action in your code.

Player

Flash 4 or later.

nextFrame
Syntax

nextFrame();

Arguments

None.

Description

Action; sends the playhead to the next frame and stops it.

Player

Flash 2 or later.

Example

When the user clicks a button that a nextFrame action is assigned to, the
playhead is sent to the next frame.

on (release) {
nextFrame(5);

}

ActionScript Dictionary 331

nextScene
Syntax

nextScene();

Arguments

None.

Description

Action; sends the playhead to frame 1 of the next scene and stops it.

Player

Flash 2 or later.

Example

This action is assigned to a button that, when pressed and released, sends the
playhead to frame 1 of the next scene.

on(release) {
nextScene();

}

not
Syntax

not expression

Arguments

expression Any variable or other expression that converts to a Boolean value.

Description

Operator; performs a logical NOT operation in the Flash 4 Player.

Player

Flash 4 or later. This operator has been deprecated in Flash 5; use of the new !
(logical NOT) operator is recommended.

See also

! (logical NOT)
Chapter 7332

null
Syntax

null

Arguments

None.

Description

Keyword; a special value that can be assigned to variables, or returned by a
function if no data was provided. You can use null to represent values that are
missing or do not have a defined data type.

Player

Flash 5 or later.

Example

In a numeric context, null evaluates to 0. Equality tests can be performed with
null. In this statement, a binary tree node has no left child, so the field for its left
child could be set to null.

if (tree.left == null) {
tree.left = new TreeNode();

}

ActionScript Dictionary 333

Number (function)
Syntax

Number(expression);

Arguments

expression The string, Boolean, or other expression to convert to a number.

Description

Function; converts the argument x to a number and returns a value as follows:

If x is a number, the return value is x.

If x is a Boolean, the return value is 1 if x is true, 0 if x is false.

If x is a string, the function attempts to parse x as a decimal number with an
optional trailing exponent, that is, 1.57505e-3.

If x is undefined, the return value is 0.

This function is used to convert Flash 4 files containing deprecated operators
that are imported into the Flash 5 authoring environment. See the & operator
for more information.

Player

Flash 4 or later.

See also

Number (object)
Chapter 7334

Number (object)
The Number object is a simple wrapper object for the number data type, which
means that you can manipulate primitive numeric values using the methods and
properties associated with the Number object. The functionality provided by this
object is identical to that of the JavaScript Number object.

You must use the Number constructor when calling the methods of the Number
object, but you do not need to use the constructor when calling the properties of
the Number object. The following examples specify the syntax for calling the
methods and properties of the Number object:

This is an example of calling the toString method of the Number object:

myNumber = new Number(1234);
myNumber.toString();

Returns a string containing the binary representation of the number 1234.

This is an example of calling the MIN_VALUE property (also called a constant) of
the Number object:

smallest = Number.MIN_VALUE

Method summary for the Number object

Property summary for the Number object

Method Description

toString Returns the string representation of a Number object.

valueOf Returns the primitive value of a Number object.

Property Description

MAX_VALUE Constant representing the largest representable number
(double-precision IEEE-754). This number is approximately
1.7976931348623158e+308.

MIN_VALUE Constant representing the smallest representable
number (double-precision IEEE-754). This number is
approximately 5e-324.

NaN Constant representing the value for Not a Number (NaN).

NEGATIVE_INFINITY Constant representing the value for negative infinity.

POSITIVE_INFINITY Constant representing the value for positive infinity. This
value is the same as the global variable Infinity.
ActionScript Dictionary 335

Constructor for the Number object

Syntax

myNumber = new Number(value);

Arguments

value The numeric value of the Number object being created, or a value to be
converted to a number.

Description

Constructor; creates a new Number object. You must use the Number constructor
when using the toString and valueOf methods of the Number object. You do
not use a constructor when using the properties of the Number object. The new
Number constructor is primarily used as a placeholder. An instance of the Number
object is not the same as the Number function that converts an argument to a
primitive value.

Player

Flash 5 or later.

Example

The following code constructs new Number objects:

n1 = new Number(3.4);
n2 = new Number(-10);

See also

Number (function)

Number.MAX_VALUE
Syntax

Number.MAX_VALUE

Arguments

None.

Description

Property; the largest representable number (double-precision IEEE-754). This
number is approximately 1.79E+308.

Player

Flash 5 or later.
Chapter 7336

Number.MIN_VALUE
Syntax

Number.MIN_VALUE

Arguments

None.

Description

Property; the smallest representable number (double-precision IEEE-754). This
number is approximately 5e-324.

Player

Flash 5 or later.

Number.NaN
Syntax

Number.NaN

Arguments

None.

Description

Property; the IEEE-754 value representing Not A Number (NaN).

Player

Flash 5 or later.

Number.NEGATIVE_INFINITY
Syntax

Number.NEGATIVE_INFINITY

Arguments

None.

Description

Property; returns the IEEE-754 value representing negative infinity. This value is
the same as the global variable Infinity.

Negative infinity is a special numeric value that is returned when a mathematical
operation or function returns a negative value larger than can be represented.

Player

Flash 5 or later.
ActionScript Dictionary 337

Number.POSITIVE_INFINITY
Syntax

Number.POSITIVE_INFINITY

Arguments

None.

Description

Property; returns the IEEE-754 value representing positive infinity. This value is
the same as the global variable Infinity.

Positive infinity is a special numeric value that is returned when a mathematical
operation or function returns a value larger than can be represented.

Player

Flash 5 or later.

Number.toString
Syntax

myNumber.toString(radix);

Arguments

radix Specifies the numeric base (from 2 to 36) to use for the number-to-string
conversion. If you do not specify the radix argument, the default value is 10.

Description

Method; returns the string representation of the specified Number object
(myNumber).

Player

Flash 5 or later.

Example

The following example uses the Number.toString method, specifying 2 for the
radix argument:

myNumber = new Number (1000);
(1000).toString(2);

Returns a string containing the binary representation of the number 1000.
Chapter 7338

Number.valueOf
Syntax

myNumber.valueOf();

Arguments

None.

Description

Method; returns the primitive value type of the specified Number object, and
converts the Number wrapper object to the primitive value type.

Player

Flash 5 or later.

Object (object)
The generic Object object is at the root of the ActionScript class hierarchy. The
functionality of the generic Object object is a small subset of that provided by the
JavaScript Object object.

The generic Object object requires the Flash 5 Player.

Method summary for the Object object

Method Description

toString Converts the specified object to a string, and returns it.

valueOf Returns the primitive value of an Object object.
ActionScript Dictionary 339

Constructor for the Object object

Syntax

new Object();
new Object(value);

Arguments

value A number, Boolean, or string to be converted to an object. This
argument is optional. If you do not specify value, the constructor creates a new
object with no defined properties.

Description

Constructor; creates a new Object object.

Player

Flash 5 or later.

See also

Sound.setTransform
Color.setTransform

Object.toString
Syntax

myObject.toString();

Arguments

None.

Description

Method; converts the specified object to a string, and returns it.

Player

Flash 5 or later.

Object.valueOf
Syntax

myObject.valueOf();

Arguments

None.

Description

Method; returns the primitive value of the specified object. If the object does not
have a primitive value, the object itself is returned.

Player

Flash 5 or later.
Chapter 7340

onClipEvent
Syntax

onClipEvent(movieEvent);{
...
}

Arguments

A movieEvent is a trigger event that executes actions that are assigned to a
movie clip instance. Any of the following values can be specified for the
movieEvent argument:

• load The action is initiated as soon as the movie clip is instantiated and
appears in the Timeline.

• unload The action is initiated in the first frame after the movie clip is
removed from the Timeline. The actions associated with the Unload movie clip
event are processed before any actions are attached to the affected frame.

• enterFrame The action is initiated as each frame is played, similar to
actions attached to a movie clip. The actions associated with the OnEnterFrame
movie clip event are processed after any actions that are attached to the
affected frames.

• mouseMove The action is initiated every time the mouse is moved. Use the
_xmouse and _ymouse properties to determine the current mouse position.

• mouseDown The action is initiated when the left mouse button is pressed.

• mouseUp The action is initiated when the left mouse button is released.

• keyDown The action is initiated when a key is pressed. Use the Key.getCode
method to retrieve information about the last key pressed.

• keyUp The action is initiated when a key is released. Use the Key.getCode
method to retrieve information about the last key pressed.

• data The action is initiated when data is received in a loadVariables or
loadMovie action. When specified with a loadVariables action, the data
event occurs only once, when the last variable is loaded. When specified with
a loadMovie action, the data event occurs repeatedly, as each section of data
is retrieved.

Description

Handler; triggers actions defined for a specific instance of a movie clip.

Player

Flash 5 or later.
ActionScript Dictionary 341

Example

The following statement includes the script from an external file when the movie
clip instance is loaded and first appears on the Timeline:

onClipEvent(load) {
#include "myScript.as"

}

The following example uses onClipEvent with the keyDown movie event. The
keyDown movie event is usually used in conjunction with one or more methods
and properties associated with the Key object. In the script below, key.getCode
is used to find out which key the user has pressed; the returned value is associated
with the RIGHT or LEFT Key object properties, and the movie is directed
accordingly.

onClipEvent(keyDown) {
if (Key.getCode() == Key.RIGHT) {

} _parent.nextFrame();
else if (Key.getCode() == Key.LEFT){

_parent.prevFrame();
}

The following example uses onClipEvent with the mouseMove movie event. The
the xmouse and ymouse properties track the position of the mouse.

onClipEvent(mouseMove) {
stageX=_root.xmouse;
stageY=_root.ymouse;
}

See also

on(mouseEvent)
Key (object)
_xmouse
_ymouse

on(mouseEvent)
Syntax

on(mouseEvent) {
statement;
}

Arguments

statement The instructions to execute when the mouseEvent takes place.
Chapter 7342

A mouseEvent action can have one of the following arguments:

• press The mouse button is pressed while the pointer is over the button.

• release The mouse button is released while the pointer is over the button.

• releaseOutside The mouse button is released while the pointer is outside
the button.

• rollOver The mouse pointer rolls over the button.

• rollOut The pointer rolls outside of the button area.

• dragOver While the pointer is over the button, the mouse button has been
pressed while rolled outside the button, and then rolled back over the button.

• dragOut While the pointer is over the button, the mouse button is pressed
and then rolls outside the button area.

• keyPress (“key”) The specified key is pressed. The key portion of the
argument is specified using any of the key codes listed in the Appendix B,
“Keyboard Keys and Key Code Values," or any of the key constants listed in the
Property summary for the Key object.

Description

Handler; specifies the mouse event, or keypress that trigger an action.

Player

Flash 2 or later.

Example

In the following script, the startDrag action executes when the mouse is
pressed and the conditional script is executed when the mouse is released and
the object is dropped:

on(press) {
startDrag("rabbit");

}
on(release) {

if(getproperty("", _droptarget) == target) {
setProperty ("rabbit", _x, _root.rabbit_x);
setProperty ("rabbit", _y, _root.rabbit_y);

} else {
_root.rabbit_x = getProperty("rabbit", _x);
_root.rabbit_y = getProperty("rabbit", _y);
_root.target = "pasture";

}
trace(_root.rabbit_y);
trace(_root.rabbit_x);
stopDrag();

}

See also

Key (object)
onClipEvent
ActionScript Dictionary 343

or
Syntax

condition1 or condition2

Arguments

condition1,2 An expression that evaluates to true or false.

Description

Operator; evaluates condition1 and condition2, and if either expression is
true, then the whole expression is true.

Player

Flash 4 or later. This operator has been deprecated in Flash 5, and users are
encouraged to make use of the new || operator.

See also

|| (OR)

ord
Syntax

ord(character);

Arguments

character The character to convert to an ASCII code number.

Description

String function; converts characters to ASCII code numbers.

Player

Flash 4 or later. This function has been deprecated in Flash 5, and it is
recommended that you use the methods and properties of the String
object instead.

See also

String (object)
Chapter 7344

_parent
Syntax

_parent.property = x
_parent._parent.property = x

Arguments

property The property being specified for the current and parent movie clip.

x The value set for the property. This is an optional argument and may not
need to be set, depending on the property.

Description

Property; specifies or returns a reference to the movie clip that contains the
current movie clip. The current movie clip is the movie clip containing the
currently executing script. Use _parent to specify a relative path.

Player

Flash 4 or later.

Example

In the following example the movie clip desk is a child of the movie clip
classroom. When the script below executes inside the movie clip desk, the
playhead will jump to frame 10 in the Timeline of the movie clip classroom.

_parent.gotoAndStop(10);

See also

_root
targetPath
ActionScript Dictionary 345

parseFloat
Syntax

parseFloat(string);

Arguments

string The string to parse and convert to a floating-point number.

Description

Function; converts a string to a floating-point number. The function parses and
returns the numbers in the string, until the parser reaches a character that is not a
part of the initial number. If the string does not begin with a number that can be
parsed, parseFloat returns NaN or 0. White space preceding valid integers is
ignored, as are trailing non-numeric characters.

Player

Flash 5 or later.

Example

The following are examples of using parseFloat to evaluate various types
of numbers:

parseFloat("-2") returns -2

parseFloat("2.5") returns 2.5

parseFloat("3.5e6") returns 3.5e6, or 3500000

parseFloat("foobar") returns NaN
Chapter 7346

parseInt
Syntax

parseInt(expression, radix);

Arguments

expression The string, floating-point number, or other expression to parse and
convert to a integer.

radix An integer representing the radix (base) of the number to parse. Legal
values are from 2 and 36. This argument is optional.

Description

Function; converts a string to an integer. If the specified string in the arguments
cannot be converted to a number, the function returns NaN or 0. Integers
beginning with 0 or specifying a radix of 8 are interpreted as octal numbers.
Integers beginning with 0x are interpreted as hexadecimal numbers. White space
preceding valid integers is ignored, as are trailing nonnumeric characters.

Player

Flash 5 or later.

Example

The following are examples of using parseInt to evaluate various types
of numbers:

parseInt("3.5") returns 3.5

parseInt("bar") returns NaN

parseInt("4foo") returns 4

Hexadecimal conversion:

parseInt("0x3F8") returns 1016

parseInt("3E8", 16) returns 1000

Binary conversion:

parseInt("1010", 2) returns 10 (the decimal representation of the
binary 1010)

Octal number parsing (in this case the octal number is identified by the radix, 8):

parseInt("777", 8) returns 511 (the decimal representation of the octal 777)
ActionScript Dictionary 347

play
Syntax

play();

Arguments

None.

Description

Action; moves the playhead forward in the Timeline.

Player

Flash 2 or later.

Example

The following code uses an if statement to check the value of a name the user
enters. If the user enters Steve, the play action is called and the playhead moves
forward in the Timeline. If the user enters anything other than Steve, the movie
does not play and a text field with the variable name alert is displayed.

stop();
if (name = "Steve") {

play();
} else {

alert = "You are not Steve!";
}

prevFrame
Syntax

prevFrame();

Arguments

None.

Description

Action; sends the playhead to the previous frame and stops it.

Player

Flash 2 or later.

Example

When the user clicks a button that a prevFrame action is assigned to, the
playhead is sent to the previous frame.

on(release) {
prevFrame(5);

}

See also

MovieClip.prevFrame
Chapter 7348

prevScene
Syntax

prevScene();

Arguments

None.

Description

Action; sends the playhead to frame 1 of the previous scene and stops it.

Player

Flash 2 or later.

See also

nextScene

print
Syntax

print (target, "bmovie");
print (target, "bmax");
print (target, "bframe");

Arguments

target The instance name of movie clip to print. By default, all of the frames in
the movie are printed. If you want to print only specific frames in the movie,
designate frames for printing by attaching a #P frame label to those frames in the
authoring environment.

bmovie Designates the bounding box of a specific frame in a movie as the print
area for all printable frames in the movie. Attach a #b label (in the authoring
environment) to designate the frame whose bounding box you want to use as
the print area.

bmax Designates a composite of all of the bounding boxes, of all the printable
frames, as the print area. Specify the bmax argument when the printable frames in
your movie vary in size.

bframe Designates that the bounding box of each printable frame be used as the
print area for that frame. This changes the print area for each frame and scales the
objects to fit the print area. Use bframe if you have objects of different sizes in
each frame and want each object to fill the printed page.
ActionScript Dictionary 349

Description

Action; prints the target movie clip according to the printer modifier specified in
the argument. If you want to print only specific frames in the target movie, attach
a #P frame label to the frames you want to print. Although the print action
results in higher quality prints than the printAsBitmap action, it cannot be used
to print movies that use alpha transparencies or special color effects.

If you do not specify a print area argument, the print area is determined by the
Stage size of the loaded movie by default. The movie does not inherit the main
movie’s Stage size. You can control the print area by specifying the bmovie, bmax,
or bframe arguments.

All of the printable elements in a movie must be fully loaded before printing
can begin.

The Flash Player printing feature supports PostScript and non-PostScript printers.
Non-PostScript printers convert vectors to bitmaps.

Player

Flash 5 or later.

Example

The following example will print all of the printable frames in myMovie with
the print area defined by the bounding box of the frame with the #b frame
label attached:

print("myMovie","bmovie");

The following example will print all of the printable frames in myMovie with a
print area defined by the bounding box of each frame:

print("myMovie","bframe");

See also

printAsBitmap
Chapter 7350

printAsBitmap
Syntax

printAsBitmap(target, "bmovie");
printAsBitmap(target, "bmax");
printAsBitmap(target, "bframe");

Arguments

target The instance name of movie clip to print. By default, all of the frames in
the movie are printed. If you want to print only specific frames in the movie,
designate frames for printing by attaching a #P frame label to those frames in the
authoring environment.

bmovie Designates the bounding box of a specific frame in a movie as the print
area for all printable frames in the movie. Attach a #b label (in the authoring
environment) to designate the frame whose bounding box you want to use as
the print area.

bmax Designates a composite of all of the bounding boxes, of all the printable
frames, as the print area. Specify the bmax argument when the printable frames in
your movie vary in size.

bframe Designates that the bounding box of each printable frame be used as the
print area for that frame. This changes the print area for each frame and scales the
objects to fit the print area. Use bframe if you have objects of different sizes in
each frame and want each object to fill the printed page.

Description

Action; prints the target movie clip as a bitmap. Use printAsBitmap to print
movies that contain frames with objects that use transparency or color effects. The
printAsBitmap action prints at the highest available resolution of the printer in
order to maintain as much definition and quality as possible. To calculate the
printable file size of a frame designated to print as a bitmap, multiply pixel width
by pixel height by printer resolution.

If your movie does not contain alpha transparencies or color effects, it is
recommended that you use the print action for better quality results.

By default, the print area is determined by the Stage size of the loaded movie. The
movie does not inherit the main movie’s Stage size. You can control the print area
by specifying the bmovie, bmax, or bframe arguments.

All of the printable elements in a movie must be fully loaded before printing
can begin.

The Flash Player printing feature supports PostScript and non-PostScript printers.
Non-PostScript printers convert vectors to bitmaps.

Player

Flash 5 or later.

See also

print
ActionScript Dictionary 351

_quality
Syntax

_quality
_quality = x;

Arguments

x A string specifying one of the following values:

LOW Low rendering quality. Graphics are not antialiased, bitmaps are not
smoothed.

MEDIUM Medium rendering quality. Graphics are antialiased using a 2x2 grid,
but bitmaps are not smoothed. Suitable for movies that do not contain text.

HIGH High rendering quality. Graphics are antialiased using a 4x4 grid, and
bitmaps are smoothed if the movie is static. This is the default rendering quality
setting used by Flash.

BEST Very high rendering quality. Graphics are antialiased using a 4x4 grid,
and bitmaps are always smoothed.

Description

Property (global); sets or retrieves the rendering quality used for a movie.

Player

Flash 5 or later.

Example

The following example sets the rendering for oldQuality to HIGH:

oldQualtiy = _quality
_quality = "HIGH";

See also

_highquality
Chapter 7352

random
Syntax

random();

Arguments

value The highest integer for which random will return a value.

Description

Function; returns a random integer between 0 and the integer specified in the
value argument.

Player

Flash 4. This function is deprecated in Flash 5; use of the Math.random method
is recommended.

Example

The following use of random returns a value of 0, 1, 2, 3, or 4:

random(5);

See also

Math.random

removeMovieClip
Syntax

removeMovieClip(target);

Arguments

target The target path of a movie clip instance created with
duplicateMovieClip, or the instance name of a movie clip created with the
attachMovie or duplicateMovie methods of the MovieClip object.

Description

Action; deletes a movie clip instance that was created with the attachMovie or
duplicateMovieClip methods of the MovieClip object, or with the
duplicateMovieClip action.

Player

Flash 4 or later.

See also

duplicateMovieClip
MovieClip.duplicateMovieClip
MovieClip.attachMovie
MovieClip.removeMovieClip
ActionScript Dictionary 353

return
Syntax

return[expression];
return;

Arguments

expression A type, string, number, array, or object to evaluate and return as a
value of the function. This argument is optional.

Description

Action; specifies the value returned by a function. When the return action is
executed, the expression is evaluated and returned as a value of the function.
The return action causes the function to stop executing. If the return statement
is used alone, or if Flash does not encounter a return statement during the
looping action, it returns null.

Player

Flash 5 or later.

Example

The following is an example of using return:

function sum(a, b, c){
return a + b + c;
}

See also

function
Chapter 7354

_root
Syntax

_root;
_root.movieClip;
_root.action;

Arguments

movieClip The instance name of a movie clip.

action The value set for the property. This is an optional argument and may
not need to be set depending on the property.

Description

Property; specifies or returns a reference to the root movie Timeline. If a movie
has multiple levels, the root movie Timeline is on the level containing the
currently executing script. For example, if a script in level 1 evaluates _root,
level 1 is returned.

Specifying _root is the same as using the slash notation (/) to specify an absolute
path within the current level.

Player

Flash 4 or later.

Example

The following example stops the Timeline of the level containing the currently
executing script:

_rootl.stop();

The following example sends the Timeline in the current level to frame 3:

_root.gotoAndStop(3);

See also

_parent
targetPath
ActionScript Dictionary 355

_rotation
Syntax

instancename._rotation
instancename._rotation = integer

Arguments

integer The number of degrees to rotate the movie clip.

instancename The movie clip to rotate.

Description

Property; specifies the rotation of the movie clip in degrees.

Player

Flash 4 or later.

scroll
Syntax

variable_name.scroll = x

Arguments

variable_name The name of a variable associated with a text field.

x The line number of the topmost visible line in the text field. You can specify
this value or use the default value of 1. The Flash Player updates this value as the
user scrolls up and down the text field.

Description

Property; controls the display of information in a text field associated with a
variable. The scroll property defines where the text field begins displaying
content; after you set it, the Flash Player updates it as the user scrolls through the
text field. The scroll property is useful for directing users to a specific paragraph
in a long passage, or creating scrolling text fields. This property can be retrieved
and modified.

Player

Flash 4 or later.

See also

maxscroll
Chapter 7356

Selection (object)
The Selection object allows you to set and control the currently focused editable
text field. The currently focused editable text field is the field where the user’s
mouse pointer is currently placed. Selection-span indexes are zero-based (where
the first position is 0, the second position is 1, and so on).

There is no constructor method for the Selection object, as there can only be one
currently focused field at a time.

Method summary for the Selection object

Selection.getBeginIndex
Syntax

Selection.getBeginIndex();

Arguments

None.

Description

Method; returns index at the beginning of the selection span. If no index exists or
no field currently has the focus, the method returns -1. Selection span indexes are
zero-based (where the first position is 0, the second position is 1, and so on).

Player

Flash 5 or later.

Method Description

getBeginIndex Returns the index at the beginning of selection span. Returns -1 if
there is no index or currently selected field.

getCaretIndex Returns the current caret position in the currently focused
selection span. Returns -1 if there is no caret position or currently
focused selection span.

getEndIndex Returns the index at the end of the selection span. Returns -1 if
there is no index or currently selected field.

getFocus Returns the name of the variable for currently focused editable
text field. Returns null if there is no currently focused editable
text field.

setFocus Focuses the editable text field associated with the variable
specified in the argument.

setSelection Sets the beginning and ending indexes of the selection span.
ActionScript Dictionary 357

Selection.getCaretIndex
Syntax

Selection.getCaretIndex();

Arguments

None.

Description

Method; returns the index of the blinking cursor position. If there is no blinking
mouse pointer displayed, the method returns -1. Selection span indexes are
zero-based (where the first position is 0, the second position is 1, and so on).

Player

Flash 5 or later.

Selection.getEndIndex
Syntax

Selection.getEndIndex();

Arguments

None.

Description

Method; returns the ending index of the currently focused selection span. If no
index exists, or if there is no currently focused selection span, the method returns
-1. Selection span indexes are zero-based (where the first position is 0, the second
position is 1, and so on).

Player

Flash 5 or later.
Chapter 7358

Selection.getFocus
Syntax

Selection.getFocus();

Arguments

None.

Description

Method; returns the name of the variable of the currently focused editable text
field. If no text field is currently focused, the method returns null.

Player

Flash 5 or later.

Example

The following code returns the name of the variable:

_root.anyMovieClip.myTextField.

Selection.setFocus
Syntax

Selection.setFocus(variable);

Arguments

variable A string specifying the name of a variable associated with a text field
using dot or slash notation.

Description

Method; focuses the editable text field associated with the specified variable.

Player

Flash 5 or later.
ActionScript Dictionary 359

Selection.setSelection
Syntax

Selection.setSelection(start, end);

Arguments

start The beginning index of the selection span.

end The ending index of the selection span.

Description

Method; sets the selection span of the currently focused text field. The new
selection span will begin at the index specified in the start argument, and end at
the index specified in the end argument. Selection span indexes are zero-based
(where the first position is 0, the second position is 1, and so on). This method has
no effect if there is no currently focused text field.

Player

Flash 5 or later.

set
Syntax

variable = expression;
set(variable, expression);

Arguments

variable The name of the container that holds the value of the expression
argument.

expression The value (or a phrase that can be evaluated to a value) that is
assigned to the variable.

Description

Action; assigns a value to a variable. A variable is a container that holds
information. The container itself is always the same, but the contents can change.
By changing the value of a variable as the movie plays, you can record and save
information about what the user has done, record values that change as the movie
plays, or evaluate whether a condition is true or false.

Variables can hold either numbers or strings of characters. Each movie and movie
clip has its own set of variables, and each variable has its own value independent of
variables in other movies or movie clips.

ActionScript is an untyped language. That means that variables do not need to be
explicitly defined as containing either a number or a string. Flash interprets the
data type as an integer or string accordingly.

Use the set statement in conjunction with the call action to pass or return
values.
Chapter 7360

Player

Flash 4 or later.

Example

This example sets a variable called orig_x_pos that stores the original x axis
position of the ship movie clip in order to reset the ship to its starting location
later in the movie:

on(release) {
set(x_pos, getProperty ("ship", _x));

}

This is equivalent to writing the following:

on(release) {
orig_x_pos = getProperty ("ship", _x);

}

See also

var
call

setProperty
Syntax

setProperty(target, property, expression);

Arguments

target The path to the instance name of the movie clip whose property is
being set.

property The property to be set.

expression The value to which the property is set.

Description

Action; changes the property of a movie clip as the movie plays.

Player

Flash 4 or later.

Example

This statement sets the _alpha property of a movie clip named star to 30
percent when the button is clicked:

on(release) {
setProperty("star", _alpha = 30);

}

See also

getProperty
ActionScript Dictionary 361

Sound (object)
The Sound object allows you to set and control sounds in a particular movie clip
instance, or for the global Timeline, if you do not specify a target when creating
a new sound object. You must use the constructor new Sound to create an instance
of the Sound object before calling the methods of the Sound object.

The Sound object is only supported for the Flash 5 Player.

Method summary for the Sound object

Constructor for the Sound object

Syntax

new Sound();
new Sound(target);

Arguments

target The movie clip instance that the Sound object applies to. This
argument is optional.

Description

Method; creates a new Sound object for a specified movie clip. If you do
not specify a target, the Sound object controls all of the sounds in the
global Timeline.

Player

Flash 5 or later.

Example

GlobalSound = new Sound();
MovieSound = new Sound(mymovie);

Method Description

attachSound Attaches the sound specified in the argument.

getPan Returns the value of the previous setPan call.

getTransform Returns the value of the previous setTransform call.

getVolume Returns the value of the previous setVolume call.

setPan Sets the left/right balance of the sound.

setTransform Sets transform for a sound.

setVolume Sets the volume level for a sound.

start Starts playing a sound from the beginning or, optionally, from an
offset point set in the argument.

stop Stops the specified sound or all sounds currently playing.
Chapter 7362

Sound.attachSound
Syntax

mySound.attachSound("idName");

Arguments

idName The name for the new instance of the sound. This is the same as the
name entered for the identifier in the Symbol Linkage Properties dialog box. This
argument must be enclosed in " " (quotation marks).

Description

Method; attaches the sound specified in the idName argument to the specified
Sound object. The sound must be in the library of the current movie and specified
for export in the Symbol Linkage Properties dialog box. You must call
Sound.start to start playing the sound.

Player

Flash 5 or later.

See also

Sound.start

Sound.getPan
Syntax

mySound.getPan();

Arguments

None.

Description

Method; returns the pan level set in the last setPan call as an integer from -100
to 100. The pan setting controls the left-right balance of the current and future
sounds in a movie.

This method is cumulative with the setVolume or setTransform methods.

Player

Flash 5 or later.

See also

Sound.setPan

Sound.setTransform
ActionScript Dictionary 363

Sound.getTransform
Syntax

mySound.getTransform();

Arguments

None.

Description

Method; returns the sound transform information for the specified Sound object
set with the last setTransform call.

Player

Flash 5 or later.

See also

Sound.setTransform

Sound.getVolume
Syntax

mySound.getVolume();

Arguments

None.

Description

Method; returns the sound volume level as an integer from 0 to 100, where 0 is off
and 100 is full volume. The default setting is 100.

Player

Flash 5 or later.

See also

Sound.setVolume
Chapter 7364

Sound.setPan
Syntax

mySound.setPan(pan);

Arguments

pan An integer specifying the left-right balance for a sound. The range of valid
values is -100 to 100, where -100 uses only the the left channel, 100 uses only the
right channel, and 0 balances the sound evenly between the two channels.

Description

Method; determines how the sound is played in the left and right channels
(speakers). For mono sounds, pan affects which speaker (left or right) the sound
plays through.

This method is cumulative with the setVolume and setTransform methods,
and calling this method deletes and updates previous setPan and
setTransform settings.

Player

Flash 5 or later.

Example

The following example uses setVolume and setPan to control a sound object
with the specified target "u2”:

onClipEvent(mouseDown) {
// create a sound object and
s = new Sound(this);
// attach a sound in the library
s.attachSound("u2");
//set volume at 50%
s.setVolume(50);
//turn off the sound in the right channel
s.setPan(-100);
//start 30 seconds into the sound and play it 5 times
s.start(30, 5);

See also

Sound.setTransform
Sound.setVolume
ActionScript Dictionary 365

Sound.setTransform
Syntax

mySound.setTransform(soundTransformObject);

Arguments

soundTransformObject An object created with the constructor for the generic
Object object.

Description

Method; sets the sound transform information for a Sound object. This method is
cumulative with the setVolume and setPan methods, and calling this method
deletes and updates any previous setPan or setVolume settings. This call is for
expert users who want to add interesting effects to sounds.

Sounds use a considerable amount of disk space and memory. Because stereo
sounds use twice as much data as mono sounds, it’s generally best to use 22-Khz
6-bit mono sounds. You can use the setTransform method to play mono sounds
as stereo, play stereo sounds as mono, and to add interesting effects to sounds.

The soundTransformObject argument is an object that you create using the
constructor method of the generic Object object with parameters specifying how
the sound is distributed to the left and right channels (speakers).

The parameters for the soundTransformObject are as follows:

11 A percentage value specifying how much of the left input to play in the left
speaker (-100 to 100).

1r A percentage value specifying how much of the right input to play in the left
speaker (-100 to 100).

rr A percentage value specifying how much of the right input to play in the
right speaker (-100 to 100).

rl A percentage value specifying how much of the left input to play in the right
speaker (-100 to 100).

The net result of the parameters is represented by the following formula:

leftOutput = left input * ll + right input * lr

rightOutput = right lnput * rr + left input * rl

The values for left input or right input are determined by the type (stereo or
mono) of sound in your movie.

Stereo sounds divide the sound input evenly between the left and right speakers
and have the following transform settings by default:

ll = 100
lr = 0
rr = 100
rl = 0
Chapter 7366

Mono sounds play all sound input in the left speaker and have the following
transform settings by default:

ll = 100
lr = 100
rr = 0
rl = 0

Player

Flash 5 or later.

Example

The following example creates a sound transform object that plays both the left
and right channels in the left channel:

mySoundTransformObject = new Object
mySoundTransformObject.ll = 100
mySoundTransformObject.lr = 100
mySoundTransformObject.rr = 0
mySoundTransformObject.rl = 0

In order to apply the sound transform object to a Sound object, you need to pass
the object to the Sound object using setTransform as follows:

mySound.setTransform(mySoundTransformObject);

The following are examples of settings that can be set using setTransform, but
cannot be set using setVolume or setPan, even if combined.

This code plays both the left and right channels through the left channel:

mySound.setTransform(soundTransformObjectLeft);

In the above code, the soundTransformObjectLeft has the following
parameters:

11 = 100
1r = 100
rr = 0
rl = 0

This code plays a stereo sound as mono:

setTransform(soundTransformObjectMono);

In the above code, the soundTransformObjectMono has the following
parameters:

ll = 50
lr = 50
rr = 50
rl = 50

This code plays the left channel at half capacity and adds the rest of the left
channel to the right channel:

setTransform(soundTransformObjectHalf);
ActionScript Dictionary 367

In the above code, the soundTransformObjectHalf has the following
parameters:

11 = 50
lr = 0
rr = 100
rl = 50

See also

Constructor for the Object object

Sound.setVolume
Syntax

mySound.setVolume(volume);

Arguments

volume A number from 0 to 100 representing a volume level. 100 is full volume
and 0 is no volume. The default setting is 100.

Description

Method; sets the volume for the Sound object.

This method is cumulative with the setPan and setTransform methods.

Player

Flash 5 or later.

Example

The following example sets volume to 50% and transfers the sound over time
from the left speaker to the right speaker:

onClipEvent (load) {
i = -100;
s = new sound();
s.setVolume(50);

}
onClipEvent (enterFrame) {

S.setPan(i++);
}

See also

Sound.setPan
Sound.setTransform
Chapter 7368

Sound.start
Syntax

mySound.start();
mySound.start([secondOffset, loop]);

secondOffset An optional argument allowing you to start the sound
playing at a specific point. For example, if you have a 30-second sound and
want the sound to start playing in the middle, specify 15 for the secondOffset
argument. The sound is not delayed 15 seconds, but rather starts playing at the
15-second mark.

loop An optional argument allowing you to specify the number of times the
sound should loop.

Description

Method; starts playing the last attached sound from the beginning if no
argument is specified, or starting at the point in the sound specified by the
secondOffset argument.

Player

Flash 5 or later.

See also

Sound.setPan
Sound.stop

Sound.stop
Syntax

mySound.stop();
mySound.stop(["idName"]);

Arguments

idName An optional argument specifying a specific sound to stop playing. The
idName argument must be enclosed in quotation marks(" ").

Description

Method; stops all sounds currently playing if no argument is specified, or just the
sound specified in the idName argument.

Player

Flash 5 or later.

See also

Sound.start
ActionScript Dictionary 369

_soundbuftime
Syntax

_soundbuftime = integer;

Arguments

integer The number of seconds before the movie starts to stream.

Description

Property (global); establishes the number of seconds of streaming sound to
prebuffer. The default value is 5 seconds.

Player

Flash 4 or later.
Chapter 7370

startDrag
Syntax

startDrag(target);
startDrag(target,[lock]);
startDrag(target [,lock [,left , top , right, bottom]]);

Arguments

target The target path of the movie clip to drag.

lock A Boolean value specifying whether the draggable movie clip is locked to
the center of the mouse position (true), or locked to the point where the user first
clicked on the movie clip (false). This argument is optional.

left, top, right, bottom Values relative to the coordinates of the movie
clip’s parent that specify a constraint rectangle for the movie clip. These
arguments are optional.

Description

Action; makes the target movie clip draggable while the movie is playing. Only
one movie clip can be dragged at a time. Once a startDrag operation is executed,
the movie clip remains draggable until explicitly stopped by a stopDrag action, or
until a startDrag action for another movie clip is called.

Example

To create a movie clip that users can position in any location, attach the
startDrag and stopDrag actions to a button inside the movie clip, as in
the following:

on(press) {
startDrag("",true);

}
on(release) {

stopDrag();
}

See also

stopDrag

_droptarget
ActionScript Dictionary 371

stop
Syntax

stop;

Arguments

None.

Description

Action; stops the movie that is currently playing. The most common use of this
action is to control movie clips with buttons.

Player

Flash 3 or later.

stopAllSounds
Syntax

stopAllSounds();

Arguments

None.

Description

Action; stops all sounds currently playing in a movie without stopping the
playhead. Sounds set to stream will resume playing as the playhead move over the
frames they are in.

Player

Flash 3 or later.

Example

The following code could be applied to a button that, when clicked, stops all
sounds in the movie:

on(release) {
stopAllSounds();

}

See also

Sound (object)
Chapter 7372

stopDrag
Syntax

stopDrag();

Arguments

None.

Description

Action; stops the current drag operation.

Player

Flash 4 or later.

Example

This statement stops the drag action on the instance mc when the user releases the
mouse button:

on(press) {
startDrag("mc");

}
on(release) {

stopdrag();
}

See also

startDrag
_droptarget
ActionScript Dictionary 373

String (function)
Syntax

String(expression);

Arguments

expression The number, Boolean, variable, or object to convert to a string.

Description

Function; returns a string representation of the specified argument as follows:

If x is Boolean, the return string is true or false.

If x is a number, the return string is a decimal representation of the number.

If x is a string, the return string is x.

If x is an object, the return value is a string representation of the object generated
by calling the string property for the object, or by calling object.toString if no
such property exists.

If x is a movie clip, the return value is the target path of the movie clip in slash (/)
notation.

If x is undefined, the return value is an empty string.

Player

Flash 3 or later.

See also

Object.toString
Number.toString
String (object)
" " (string delimiter)
Chapter 7374

" " (string delimiter)
Syntax

"text"

Arguments

text Any text.

Description

String delimiter; when used before and after a string, quotes indicate that the
string is a literal—not a variable, numerical value, or other ActionScript element.

Player

Flash 4 or later.

Example

This statement uses quotes to indicate that the string “Prince Edward Island” is a
literal string, and not the value of a variable:

province = "Prince Edward Island"

See also

String (object)
String (function)

String (object)
The String object is a wrapper for the string primitive data type, which allows you
to use the methods and properties of the String object to manipulate primitive
string value types. You can convert the value of any object into a string using the
String() function.

All of the methods of the String object, except for concat, fromCharCode, slice,
and substr, are generic. This means the methods themselves call this.toString
before performing their operations, and you can use these methods with other
non-String objects.

You can call any of the methods of the String object using the constructor method
new String or using a string literal value. If you specify a string literal, the
ActionScript interpreter automatically converts it to a temporary String object,
calls the method, and then discards the temporary String object. You can also use
the String.length property with a string literal.

It is important that you do not confuse a string literal with an instance of the
String object. In the following example the first line of code creates the string
literal s1, and the second line of code creates an instance of the String object s2.

s1 = "foo"
s2 = new String("foo")

It is recommended that you use string literals unless you specifically need to use a
String object, as String objects can have counterintuitive behavior.
ActionScript Dictionary 375

Method summary for String object

Property summary for the String object

Method Description

charAt Returns a number corresponding to the placement of the character
in the string.

charCodeAt Returns the value of the character at the given index as a 16-bit
integer between 0 and 65535.

concat Combines the text of two strings and returns a new string.

fromCharCode Returns a string made up of the characters specified in the
arguments.

indexOf Searches the string and returns the index of the value specified in
the arguments. If value occurs more than once, the index of the first
occurrence is returned. If value is not found, -1 is returned.

lastIndexOf Returns the last occurrence of substring within the string that
appears before the start position specified in the argument, or -1
if not found.

slice Extracts a section of a string and returns a new string.

split Splits a String object into an array of strings by separating the
string into substrings.

substr Returns a specified number of characters in a string, beginning at
the location specified in the argument.

substring Returns the characters between two indexes, specified in the
arguments, into the string.

toLowerCase Converts the string to lowercase and returns the result.

toUpperCase Converts the string to uppercase and returns the result.

Property Description

length Returns the length of the string.
Chapter 7376

Constructor for the String object

Syntax

new String(value);

Arguments

value The initial value of the new String object.

Description

Constructor; creates a new String object.

Player

Flash 5 or later.

See also

String (function)
" " (string delimiter)

String.charAt
Syntax

myString.charAt(index);

Arguments

index The number of the character in the string to be returned.

Description

Method; returns the character specified by the argument index. The index of the
first character in a string is 0. If index is not a number from 0 to string.length
- 1, an empty string is returned.

Player

Flash 5 or later.
ActionScript Dictionary 377

String.charCodeAt
Syntax

myString.charCodeAt(index);

Arguments

index The number of the character for which the value is retrieved.

Description

Method; returns the value of the character specified by index. The returned value
is a 16-bit integer from 0 to 65535.

This method is similar to string.charAt except that the returned value is for the
character at a specific location, instead of a substring containing the character.

Player

Flash 5 or later.

String.concat
Syntax

myString.concat(value1,...valueN);

Arguments

value1,...valueN Zero or more values to be concatenated.

Description

Method; combines the specified values and returns a new string. If necessary,
each value argument is converted to a string and appended, in order, to the end
of the string.

Player

Flash 5 or later.

String.fromCharCode
Syntax

myString.fromCharCode(c1,c2,...cN);

Arguments

c1,c2,...cN The characters to be made into a string.

Description

Method; returns a string made up of the characters specified in the arguments.

Player

Flash 5 or later.
Chapter 7378

String.indexOf
Syntax

myString.indexOf(value);
myString.index of (value, start);

Arguments

value An integer or string specifying the substring to be searched for within
myString.

start An integer specifying the starting point of the substring. This argument
is optional.

Description

Method; searches the string and returns the position of the first occurrence of the
specified value. If the value is not found, the method returns -1.

Player

Flash 5 or later.

String.lastIndexOf
Syntax

myString.lastIndexOf(substring);
myString.lastIndexOf(substring, start);

Arguments

substring An integer or string specifying the string to be searched for.

start An integer specifying the starting point inside the substring. This
argument is optional.

Description

Method; searches the string and returns the index of the last occurrence of
substring found within the calling string. If substring is not found, the
method returns -1.

Player

Flash 5 or later.
ActionScript Dictionary 379

String.length
Syntax

string.length

Arguments

None.

Description

Property; returns the number of characters in the specified String object. The
index of the last character for any string x is x.length-1.

Player

Flash 5 or later.

String.slice
Syntax

myString.slice(start, end);

Arguments

start A number specifying the index of the starting point for the slice. If start
is a negative number, the starting point is determined from the end of the string,
where -1 is the last character.

end A number specifying the index of the ending point for the slice. If end is
not specified, the slice includes all characters from the start to the end of the
string. If end is a negative number, the ending point is determined from the end
of the string, where -1 is the last character.

Description

Method; extracts a slice, or substring, of the specified String object; then returns
it as a new string without modifying the original String object. The returned
string includes the start character and all characters up to (but not including)
the end character.

Player

Flash 5 or later.
Chapter 7380

String.split
Syntax

myString.split(delimiter);

Arguments

delimiter The character used to delimit the string.

Description

Method; splits a String object by breaking the string wherever the specified
delimiter argument occurs, and returns the substrings in an array. If no
delimiter is specified, the returned array contains only one element—the string
itself. If the delimiter is an empty string, each character in the String object
becomes an element in the array.

Player

Flash 5 or later.

String.substr
Syntax

myString.substr(start, length);

Arguments

start An integer that indicates the position of the first character in the
substring being created. If start is a negative number, the starting position is
determined from the end of the string, where the -1 is the last character.

length The number of characters in the substring being created. If length
is not specified, the substring includes all of the characters from the start to the
end of the string.

Description

Method; returns the characters in a string from the index specified in the start
argument through the number of characters specified in the length argument.

Player

Flash 5 or later.
ActionScript Dictionary 381

String.substring
Syntax

myString.substring(from, to);

Arguments

from An integer that indicates the position of the first character in the substring
being created. Valid values for from are 0 through string.length - 1.

to An integer that is 1+ the index of the last character in the substring being
created. Valid values for to are 1 through string.length. If the to argument is
not specified, the end of the substring is the end of the string. If from equals to,
the method returns an empty string. If from is greater than to, the arguments are
automatically swapped before the function executes.

Description

Method; returns a string consisting of the characters between the points specified
by the from and to arguments.

Player

Flash 5 or later.

String.toLowerCase
Syntax

myString.toLowerCase();

Arguments

None.

Description

Method; returns a copy of the String object, with all of the uppercase characters
converted to lowercase.

Player

Flash 5 or later.
Chapter 7382

String.toUpperCase
Syntax

myString.toUpperCase();

Arguments

None.

Description

Method; returns a copy of the String object, with all of the lowercase characters
converted to uppercase.

Player

Flash 5 or later.

substring
Syntax

substring(string, index, count);

Arguments

string The string from which to extract the new string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not
including the index character.

Description

String function; extracts part of a string.

Player

Flash 4 or later. This function has been deprecated in Flash 5.

See also

String.substring
ActionScript Dictionary 383

_target
Syntax

instancename._target

Arguments

instancename The name of a movie clip instance.

Description

Property (read-only); returns the target path of the movie clip instance specified in
the instancename argument.

Player

Flash 4 or later.

targetPath
Syntax

targetpath(movieClipObject);

Arguments

movieClipObject Reference (for example, _root or _parent) to the movie clip
for which the target path is being retrieved.

Description

Function; returns a string containing the target path of movieClipObject. The
target path is returned in dot notation. To retrieve the target path in slash
notation, use the _target property.

Player

Flash 5 or later.

Example

The following examples are equivalent. The first example uses dot notation, and
the second example uses slash notation.

targetPath (Board.Block[index*2+1]) {
play();
}

Is equivalent to:

tellTarget ("Board/Block:" + (index*2+1)) {
play();
}

See also

eval
Chapter 7384

tellTarget
Syntax

tellTarget(target) {
statement;
}

Arguments

target A target path string specifying the Timeline to be controlled.

statement Instructions applied to the targeted Timeline.

Description

Action; applies the instructions specified in the statements argument to the
Timeline specified in the target argument. The tellTarget action is useful for
navigation controls. Assign tellTarget to buttons that stop or start movie clips
elsewhere on the Stage. You can also make movie clips go to a particular frame in
that clip. For example, you might assign tellTarget to buttons that stop or start
movie clips on the Stage or prompt movie clips to jump to a particular frame.

The tellTarget action is very similar to the with action, except that with takes a
movie clip or other object as a target, and tellTarget requires a target path to a
movie clip and cannot control objects.

Player

Flash 3 or later. This action is deprecated in Flash 5; use of the with action is
recommended.

Example

This tellTarget statement controls the movie clip instance ball on the main
Timeline. Frame 1 of the movie clip is blank and has a stop action so that it isn’t
visible on the Stage. When the button with the following action is clicked,
tellTarget tells the playhead in the movie clip ball to go to frame 2 and play
the animation that starts there.

on(release) {
tellTarget("ball") {

gotoAndPlay(2);
}

}

See also

with
ActionScript Dictionary 385

this
Syntax

this

Arguments

None.

Description

Keyword; references an object or movie clip instance. The keyword this has
the same purpose and function in ActionScript as it does in JavaScript, with
some additional functionality. In ActionScript, when a script executes, this
references the movie clip instance that contains the script. When used with a
method invocation, this contains a reference to the object that contains the
executed method.

Player

Flash 5 or later.

Example

In the following example, the keyword this references the Circle object:

function Circle(radius){
this.radius = radius;
this.area = math.PI * radius * radius;

}

In the following statement assigned to a frame, the keyword this references the
current movie clip:

//sets the alpha property of the current movie clip to 20.
this._alpha = 20;

In the following statement inside an onClipEvent handler, the keyword this
references the current movie clip:

//when the movie clip loads, a startDrag operation is initiated
for the current movie clip.

onClipEvent (load) {
startDrag (this, true);

}

See also

new
Chapter 7386

toggleHighQuality
Syntax

toggleHighQuality();

Arguments

None.

Description

Action; turns antialiasing on and off in the Flash Player. Antialiasing smooths the
edges of objects and slows down the movie playback. The toggleHighQuality
action affects all movies in the Flash Player.

Player

Flash 2 or later.

Example

The following code could be applied to a button that, when clicked, would toggle
antialiasing on and off:

on(release) {
toggleHighQuality();

}

See also

_quality
_highquality

_totalframes
Syntax

instancename._totalframes

Arguments

instancename The name of the movie clip to evaluate.

Description

Property (read-only); evaluates the movie clip specified in the instancename
argument and returns the total number of frames in the movie.

Player

Flash 4 or later.
ActionScript Dictionary 387

trace
Syntax

trace(expression);

Arguments

expression A statement to evaluate. When you test the movie, the results of
the expression argument are displayed in the Output window.

Description

Action; evaluates the expression and displays the results in the Output window
in test-movie mode.

Use trace to record programming notes or to display messages in the Output
window while testing a movie. Use the expression parameter to check if a
condition exists, or to display values in the Output window. The trace action is
similar to the alert function in JavaScript.

Player

Flash 4 or later.

Example

This example is from a game in which a draggable movie clip instance named
rabbi must be released on a specific target. A conditional statement evaluates the
_droptarget property and executes different actions depending on where rabbi
is released. The trace action is used at the end of the script to evaluate the
location of the rabbi movie clip, and display the results in the Output window.
If rabbi doesn’t behave as expected (for example, if it snaps to the wrong target),
the values sent to the Output window by the trace action will help you
determine the problem in the script.

on(press) {
rabbi.startDrag();
}
on(release) {
if(eval(_droptarget) != target) {

 rabbi._x = rabbi_x;
 rabbi._y = rabbi_y;

} else {
rabbi_x = rabbi._x;
rabbi_y = rabbi._y;
target = "_root.pasture";
}
trace("rabbi_y = " + rabbi_y);
trace("rabbi_x = " + rabbi_x);
stopDrag();
}

Chapter 7388

typeof
Syntax

typeof(expression);

Arguments

expression A string, movie clip, object, or function.

Description

Operator; a unary operator placed before a single argument. Causes Flash to
evaluate expression; the result is a string specifying whether the expression is a
string, movie clip, object, or function.

Player

Flash 5 or later.

unescape
Syntax

unescape(x);

Arguments

x A string with hexadecimal sequences to escape.

Description

Top-level function; evaluates the argument x as a string, decodes the string from a
URL-encoded format (converting all hexadecimal sequences to ASCII characters),
and returns the string.

Player

Flash 5 or later.

Example

The following example illustrates the escape-to-unescape conversion process.

escape("Hello{[World]}");

The escaped result is as follows:

("Hello%7B%5BWorld%5D%7D’);

Use unescape to return to the original format:

unescape("Hello%7B%5BWorld%5D%7D")

The result is as follows:

Hello{[World]}
ActionScript Dictionary 389

unloadMovie
Syntax

unloadMovie(location);

Arguments

location The depth level or target movie clip from which to unload the
movie.

Description

Action; removes a movie from the Flash Player that was previously loaded using
the loadMovie action.

Player

Flash 3 or later.

Example

The following example unloads the main movie, leaving the Stage blank:

unloadMovie(_root);

The following example unloads the movie at level 15, when the user clicks
the mouse:

on(press) {
unloadMovie(_level15);

}

See also

loadMovie
Chapter 7390

updateAfterEvent
Syntax

updateAfterEvent(movie clip event);

Arguments

movie clip event You can specify one of the following values as a
movie clip event:

• mouseMove The action is initiated every time the mouse is moved. Use the
_xmouse and _ymouse properties to determine the current mouse position.

• mouseDown The action is initiated if the left mouse button is pressed.

• mouseUp The action is initiated if the left mouse button is released.

• keyDown The action is initiated when a key is pressed. Use the Key.getCode
method to retrieve information about the last key pressed.

• keyUp The action is initiated when a key is released. Use the key.getCode
method to retrieve information about the last key pressed.

Description

Action; updates the display (independent of the frames per second set for the
movie) after the clip event specified in the arguments has completed. This action
is not listed in the Flash Actions panel. Using updateAfterEvent with drag
actions that specify the _x and _y properties during the mouse move allows
objects to drag smoothly without a flickering screen effect.

Player

Flash 5 or later.

See also

onClipEvent

_url
Syntax

instancename._url

Arguments

instancename The target movie clip.

Description

Property (read only); retrieves the URL of the SWF file from which the movie clip
was downloaded.

Player

Flash 4 or later?
ActionScript Dictionary 391

var
Syntax

var variableName1 [= value1] [...,variableNameN [=valueN]];

Arguments

variableName The name of the variable to declare.

value The value being assigned to the variable.

Description

Action; used to declare local variables. If you declare local variables inside a
function, the variables are defined for the function and expire at the end of the
function call. If variables are not declared inside a block, but the action list was
executed with a call action, the variables are local and expire at the end of the
current list. If variables are not declared inside a block and the current action list
was not executed with the call action, the variables are not local.

Player

Flash 5 or later.

_visible
Syntax

instancename._visible
instancename._visible = Boolean;

Arguments

Boolean Enter a true or false value to specify whether the movie clip
is visible.

Description

Property; determines whether or not the movie specified by the instancename
argument is visible. Movie clips that are not visible (property set to false) are
disabled. For example, a button in a movie clip with the _visible property set
to false cannot be clicked.

Player

Flash 4 or later.
Chapter 7392

void
Syntax

void (expression);

Arguments

expression An expression of any value.

Description

Operator; a unary operator that discards the expression value and returns an
undefined value. The void operator is often used to evaluate a URL in order to
test for side effects without displaying the evaluated expression in the browser
window. The void operator is also used in comparisons using the == operator to
test for undefined values.

Player

Flash 5 or later.

while
Syntax

while(condition) {
statement(s);
}

Arguments

condition The statement that is reevaluated each time the while action
is executed. If the statement evaluates to true, the expression in the
statement(s) is run.

statement(s) The expression to run if the condition evaluates to true.

Description

Action; runs a statement or series of statements repeatedly in a loop as long as the
condition argument is true. At the end of each while action, Flash restarts the
loop by retesting the condition. If the condition is false or equal to 0, Flash skips
to the first statement after the while action.

Looping is commonly used to perform an action while a counter variable is
less than a specified value. At the end of each loop, the counter is incremented
until the threshold value is reached, the condition is no longer true, and
the loop ends.

Player

Flash 4 or later.
ActionScript Dictionary 393

Example

This example duplicates five movie clips on the Stage, each with a randomly
generated x and y position, xscale and yscale, and _alpha property to achieve a
scattered effect. The variable foo is initialized with the value 0. The condition
argument is set so that the while loop will run five times, or as long as the value
of the variable foo is less than 5. Inside the while loop, a movie clip is duplicated
and setProperty is used to adjust the various properties of the duplicated movie
clip. The last statement of the loop increments foo so that when the value reaches
5, the condition argument evaluates to false, and the loop will not be executed.

on(release) {
foo = 0;
while(foo < 5) {

duplicateMovieClip("/flower", "mc" + foo, foo);
setProperty("mc" + foo, _x, random(275));
setProperty("mc" + foo, _y, random(275));
setProperty("mc" + foo, _alpha, random(275));
setProperty("mc" + foo, _xscale, random(200));
setProperty("mc" + foo, _yscale, random(200));
foo = foo + 1;

}
}

See also

do...while
continue
Chapter 7394

_width
Syntax

instancename._width
instancename._width =value;

Arguments

value The width of the movie in pixels.

instancename An instance name of a movie clip for which the _width property
is to be set or retrieved.

Description

Property; sets the width of the movie. In previous versions of Flash, _height and
_width were read-only properties; in Flash 5 they can be set as well as retrieved.

Player

Flash 4 as a read-only property. In Flash 5 or later, this property can be set as
well as retrieved.

Example

The following code example sets the height and width properties of a movie clip
when the user clicks the mouse:

onclipEvent(mouseDown) {
_width=200;
_height=200;

}

See also

_height
ActionScript Dictionary 395

with
Syntax

with (object) {
statement(s);
}

Arguments

object An instance of an ActionScript object or movie clip.

statement(s) An action or group of actions enclosed in curly braces.

Description

Action; temporarily changes the scope (or target path) used for evaluating
expressions and actions in the statement(s). After the with action executes,
the scope chain is restored to its original state.

The object becomes the context in which the properties, variables, and
functions are read. For example, if object is myArray, and two of the properties
specified are length and concat, those properties are automatically read as
myArray.length and myArray.concat. In another example, if object is
state.california, it is as if any actions or statements inside the with action
were called from inside the california instance.

To find the value of an identifier in the statement(s), ActionScript starts at the
beginning of the scope chain specified by the object and searches for the
identifier at each level of the scope chain, in a specific order.

The scope chain used by the with action to resolve identifiers starts with the first
item in the following list and continues to the last, as follows:

• object referenced by innermost with action

• object referenced by outermost with action

• Activation object (A temporary object that is automatically created when a
function is called that holds the local variables called in the function.)

• Movie clip containing currently executing script

• Global object (predefined objects such as Math, String)

In Flash 5 the with action replaces the deprecated tellTarget action. You
are encouraged to use with instead of tellTarget because it is a standard
ActionScript extension to the ECMA-262 standard. The principal difference
between the with and tellTarget actions is that with takes a reference to a
movie clip or other object as its argument, while tellTarget takes a target
path string identifying a movie clip, and cannot be used to target objects.
Chapter 7396

To set a variable inside a with action, the variable must have been delared outside
the with action or you must enter the full path to the Timeline on which you
want the variable to live. If you set a variable in a with action without having
declared it, the with action will look for the value according to the scope chain.
If the variable doesn’t already exist, the new value will be set on the Timeline
from which the with action was called.

Example

The following example sets the x and y properties of the someOtherMovieClip
instance, and then instructs someOtherMovieClip to go to frame 3 and stop:

with (someOtherMovieClip) {
_x = 50;
_y = 100;
gotoAndStop(3);

}

The following code snippet is how you would write the preceding code without
using a with action:

someOtherMovieClip._x = 50;
someOtherMovieClip._y = 100;
someOtherMovieClip.gotoAndStop(3);

This code could also be written using the tellTarget action:

tellTarget ("someOtherMovieClip") {
_x = 50;
_y = 100;
gotoAndStop(3);

}

The with action is useful for accessing multiple items in a scope chain list
simultaneously. In the following example, the built-in Math object is placed at the
front of the scope chain. Setting Math as a default object resolves the identifiers
cos, sin, and PI to Math.cos, Math.sin, and Math.PI, respectively. The
identifiers a, x, y, and r are not methods or properties of the Math object, but
since they exist in the object activation scope of the function polar, they resolve
to the corresponding local variables.

function polar(r){
var a, x, y
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}
trace("area = " +a)
trace("x = " + x)
trace("y = " + y)
}

ActionScript Dictionary 397

You can use nested with actions to access information in multiple scopes. In the
following example, the instance fresno and the instance salinas are children of
the instance california. The statement sets the _alpha values of fresno and
salinas without changing the _alpha value of california.

with (california){
with (fresno){

_alpha = 20;
}
with (salinas){

_alpha = 40;
}

}

See also

tellTarget

_x
Syntax

instancename._x
instancename._x = integer

Arguments

integer The local x coordinate of the movie.

instancename The name of a movie clip instance.

Description

Property; sets the x coordinate of movie relative to the local coordinates of the
parent movie clip. If a movie clip is in the main Timeline, then its coordinate
system refers to the upper left corner of the Stage as (0, 0). If the move clip is
inside another movie clip that has transformations, the movie clip is in the local
coordinate system of the enclosing movie clip. Thus, for a movie clip rotated 90°
counterclockwise, the movie clip's children inherit a coordinate system that is
rotated 90° counterclockwise. The movie clip's coordinates refer to the
registration point position.

Player

Flash 3 or later.

See also

_y
_xscale
Chapter 7398

XML (object)
Use the methods and properties of the XML object to load, parse, send, build, and
manipulate XML document trees.

You must use the constructor new XML() to create an instance of the XML object
before calling any of the methods of the XML object.

XML is supported by Flash 5 or later versions of the Flash Player.

Method summary for the XML object

Method Description

appendChild Appends a node to the end of the specified object’s child list.

cloneNode Clones the specified node and, optionally, recursively clones
all children.

createElement Creates a new XML element.

createTextNode Creates a new XML text node.

hasChildNodes Returns true if the specified node has child nodes; otherwise,
returns false.

insertBefore Inserts a node in front of an existing node in the specified
node's child list.

load Loads a document (specified by the XML object) from a URL.

onLoad A callback function for load and sendAndLoad.

parseXML Parses an XML document into the specified XML object tree.

removeNode Removes the specified node from its parent.

send Sends the specified XML object to a URL.

sendAndLoad Sends the specified XML object to a URL and loads the server
response into another XML object.

toString Converts the specified node and any children to XML text.
ActionScript Dictionary 399

Property summary for the XML object

Collections summary for the XML object

Property Description

docTypeDecl Sets and returns information about an XML document’s
DOCTYPE declaration.

firstChild References the first child in the list for the specified node.

lastChild References the last child in the list for the specified node.

loaded Checks if the specified XML object has loaded.

nextSibling References the next sibling in the parent node’s child list.

nodeName Returns the tag name of an XML element.

nodeType Returns the type of the specified node (XML element or
text node).

nodeValue Returns the text of the specified node if the node is a
text node.

parentNode References the parent node of the specified node.

previousSibling References the previous sibling in the parent node’s child list.

status Returns a numeric status code indicating the success or failure
of an XML document parsing operation.

xmlDecl Sets and returns information about an XML document’s
document declaration.

Method Description

attributes Returns an associative array containing all of the attributes of
the specified node.

childNodes Returns an array containing references to the child nodes of
the specified node.
Chapter 7400

Constructor for the XML object

Syntax

new XML();
new XML(source);

Arguments

source The XML document parsed to create the new XML object.

Description

Constructor; creates a new XML object. You must use the constructor
method to create an instance of the XML object before calling any of the
XML object methods.

The first syntax constructs a new, empty XML object.

The second syntax constructs a new XML object by parsing the XML document
specified in the source argument, and populates the newly created XML object
with the resulting XML document tree.

Note: The createElement and createTextnode methods are the ‘constructor’
methods for creating the elements and text nodes in an XML document tree.

Player

Flash 5 or later.

Example

The following example creates an new empty XML object:

myXML = new XML();

See also

XML.createTextNode
XML.createElement
ActionScript Dictionary 401

XML.appendChild
Syntax

myXML.appendChild(childNode);

Arguments

childNode The child node to be added to the specified XML object’s child list.

Description

Method; appends the specified child node to the XML object’s child list. The
appended child node is placed in the tree structure once removed from its existing
parent node, if any.

Player

Flash 5 or later.

Example

The following example clones the last node from doc1 and appends it to doc2:

doc1 = new XML(src1);
doc2 = new XML();
node = doc1.lastChild.cloneNode(true);
doc2.appendChild(node);
Chapter 7402

XML.attributes
Syntax

myXML.attributes;

Arguments

None.

Description

Collection (read-write); returns an associative array containing all attributes of the
specified XML object.

Player

Flash 5 or later.

Example

The following example writes the names of the XML attributes to the
Output window:

str = "<mytag name=\"Val\"> intem </mytage>";
doc = new XML(str);
y = doc.fristChild.attributes.name;

trace (y);
doc.firstChild.attributes.order = "first";
z = doc.firstChild.attributes.order

trace(z);

The following is written to the Output window:

Val
First

XML.childNodes
Syntax

myXML.childNodes;

Arguments

None.

Description

Collection (read-only); returns an array of the specified XML object’s children.
Each element in the array is a reference to an XML object that represents a child
node. This is a read-only property and cannot be used to manipulate child nodes.
Use the methods appendChild, insertBefore, and removeNode to manipulate
child nodes.

This collection is undefined for text nodes (nodeType == 3).

Player

Flash 5 or later.
ActionScript Dictionary 403

XML.cloneNode
Syntax

myXML.cloneNode(deep);

Arguments

deep Boolean value specifying whether the children of the specified XML object
are recursively cloned.

Description

Method; constructs and returns a new XML node of the same type, name,
value, and attributes as the specified XML object. If deep is set to true, all child
nodes are recursively cloned, resulting in an exact copy of the original object’s
document tree.

Player

Flash 5 or later.

XML.createElement
Syntax

myXML.createElement(name);

Arguments

name The tag name of the XML element being created.

Description

Method; creates a new XML element with the name specified in the argument.
The new element initially has no parent and no children. The method returns
a reference to the newly created XML object representing the element. This
method and createTextNode are the constructor methods for creating nodes
for an XML object.

Player

Flash 5 or later.
Chapter 7404

XML.createTextNode
Syntax

myXML.createTextNode(text);

Arguments

text The text used to create the new text node.

Description

Method; creates a new XML text node with the specified text. The new node
initially has no parent, and text nodes cannot have children. This method
returns a reference to the XML object representing the new text node. This
method and createElement are the constructor methods for creating nodes
for an XML object.

Player

Flash 5 or later.
ActionScript Dictionary 405

XML.docTypeDecl
Syntax

myXML.XMLdocTypeDecl;

Arguments

None.

Description

Property; sets and returns information about the XML document DOCTYPE
declaration. After the XML text has been parsed into an XML object, the
XML.docTypeDecl property of the XML object is set to the text of the XML
document's DOCTYPE declaration. For example, <!DOCTYPE greeting
SYSTEM "hello.dtd">. This property is set using a string representation of
the DOCTYPE declaration, not an XML node object.

ActionScript's XML parser is not a validating parser. The DOCTYPE declaration
is read by the parser and stored in the docTypeDecl property, but no DTD
validation is performed.

If no DOCTYPE declaration was encountered during a parse operation,
XML.docTypeDecl is set to undefined. XML.toString outputs the contents
of XML.docTypeDecl immediately after the XML declaration stored in
XML.xmlDecl, and before any other text in the XML object. If XML.docTypeDecl
is undefined, no DOCTYPE declaration is output.

Player

Flash 5 or later.

Example

The following example uses XML.docTypeDecl to set the DOCTYPE declaration
for an XML object.

myXML.docTypeDecl = "<!DOCTYPE greeting SYSTEM \"hello.dtd\">";

See also

XML.toString
XML.xmlDecl
Chapter 7406

XML.firstChild
Syntax

myXML.firstChild;

Arguments

None.

Description

Property (read-only); evaluates the specified XML object and references the first
child in the parent node’s children list. This property is null if the node does not
have children. This property is undefined if the node is a text node. This is a read-
only property and cannot be used to manipulate child nodes; use the methods
appendChild, insertBefore, and removeNode to manipulate child nodes.

Player

Flash 5 or later.

See also

XML.appendChild
XML.insertBefore
XML.removeNode

XML.haschildNodes
Syntax

myXML.hasChildNodes();

Arguments

None.

Description

Method; evaluates the specified XML object and returns true if there are child
nodes; otherwise, returns false.

Player

Flash 5 or later.

Example

The following example uses the information from the XML object in a
user-defined function:

if (rootNode.hasChildNodes()) {
myfunc (rootNode.firstChild);

}

ActionScript Dictionary 407

XML.insertBefore
Syntax

myXML.insertBefore(childNode, beforeNode);

Arguments

childNode The node to be inserted.

beforeNode The node before the insertion point for the childNode.

Description

Method; inserts a new child node into the XML object’s child list, before the
beforeNode.

Player

Flash 5 or later.

XML.lastChild
Syntax

myXML.lastChild;

Arguments

None.

Description

Property (read-only); evaluates the XML object and references the last child in the
parent node’s child list. This method returns null if the node does not have
children. This is a read-only property and cannot be used to manipulate child
nodes; use the methods appendChild, insertBefore, and removeNode to
manipulate child nodes.

Player

Flash 5 or later.

See also

XML.appendChild
XML.insertBefore
XML.removeNode
Chapter 7408

XML.load
Syntax

myXML.load(url);

Arguments

url The URL where the XML document to be loaded is located. The URL
must be in the same subdomain as the URL where the movie currently resides.

Description

Method; loads an XML document from the specified URL, and replaces the
contents of the specified XML object with the downloaded XML data. The load
process is asynchronous; it does not finish immediately after the load method is
executed. When load is executed, the XML object property loaded is set to
false. When the XML data finishes downloading, the loaded property is set to
true, and the onLoad method is invoked. The XML data is not parsed until it is
completely downloaded. If the XML object previously contained any XML trees,
they are discarded.

You can specify your own callback function in place of the onLoad method.

Player

Flash 5 or later.

Example

The following is a simple example using XML.load:

doc = new XML();
doc.load ("theFile.xml");

See also

XML.onLoad
XML.loaded
ActionScript Dictionary 409

XML.loaded
Syntax

myXML.loaded;

Arguments

None.

Description

Property (read-only); determines whether the document loading process initiated
by the XML.load call has completed. If the process completes successfully, the
method returns true; otherwise, it returns false.

Player

Flash 5 or later.

Example

The following example uses XML.loaded in a simple script.

if (doc.loaded) {
gotoAndPlay(4)

}

XML.nextSibling
Syntax

myXML.nextSibling;

Arguments

None.

Description

Property (read-only); evaluates the XML object and references the next sibling in
the parent node’s child list. This method returns null if the node does not have a
next sibling node. This is a read-only property and cannot be used to manipulate
child nodes. Use the methods appendChild, insertBefore, and removeNode to
manipulate child nodes.

Player

Flash 5 or later.

See also

XML.appendChild
XML.insertBefore
XML.removeNode
Chapter 7410

XML.nodeName
Syntax

myXML.nodeName;

Arguments

None.

Description

Property; takes or returns the node name of the XML object. If the XML object
is an XML element (nodeType == 1), nodeName is the name of the tag
representing the node in the XML file. For example, TITLE is the nodeName of
an HTML TITLE tag. If the XML object is a text node (nodeType == 3), the
nodeName is null.

Player

Flash 5 or later.

See also

XML.nodeType

XML.nodeType
Syntax

myXML.nodeType;

Arguments

None.

Description

Property (read-only); takes or returns a nodeType value, where 1 is a XML
element and 3 is a text node.

Player

Flash 5 or later.

See also

XML.nodeValue
ActionScript Dictionary 411

XML.nodeValue
Syntax

myXML.nodeValue;

Arguments

None.

Description

Property; returns the node value of the XML object. If the XML object is a text
node, the nodeType is 3, and the nodeValue is the text of the node. If the XML
object is an XML element, it has a null nodeValue and is read-only.

Player

Flash 5 or later.

See also

XML.nodeType

XML.onLoad
Syntax

myXML.onLoad(success);

Arguments

success A boolean value indicating whether the XML object was successfully
loaded with a XML.load or XML.sendAndLoad operation.

Description

Method; invoked by the Flash Player when an XML document is received from
the server. If the XML document is received successfully, the success argument
is true. If the document was not received, or if an error occurred in receiving
the response from the server, the success argument is false. The default
implementation of this method is not active. To override the default
implementation, you must assign a function containing your own actions.

Player

Flash 5 or later.
Chapter 7412

Example

The following example creates a simple Flash movie for a simple e-commerce
storefront application. We use the sendAndLoad method to transmit an XML
element containing the user’s name and password, and install an onLoad handler
to handle the reply from the server.

var myLoginReply = new XML();
myLoginReply.onLoad = myOnLoad;
myXML.sendAndLoad("http://www.samplestore.com/login.cgi",

myLoginReply);
function myOnLoad(success) {

if (success) {
if (e.firstChild.nodeName == "LOGINREPLY" &&

e.firstChild.attributes.status == "OK") {
gotoAndPlay("loggedIn")

} else {
gotoAndStop("loginFailed")

}
} else {

gotoAndStop("connectionFailed")
}

}

See also

function
XML.load
XML.sendAndLoad

XML.parentNode
Syntax

myXML.parentNode;

Arguments

None.

Description

Property (read-only); references the parent node of the specified XML object, or
returns null if the node has no parent. This is a read-only property and cannot be
used to manipulate child nodes; use the methods appendChild, insertBefore,
and removeNode to manipulate children.

Player

Flash 5 or later.
ActionScript Dictionary 413

XML.parseXML
Syntax

myXML.parseXML(source);

Arguments

source The XML text to be parsed and passed to the specified XML object.

Description

Method; parses the XML text specified in the source argument, and populates
the specified XML object with the resulting XML tree. Any existing trees in the
XML object are discarded.

Player

Flash 5 or later.

XML.previousSibling
Syntax

myXML.previousSibling;

Description

Property (read-only); evaluates the XML object and references the previous sibling
in the parent node’s child list. Returns null if the node does not have a previous
sibling node. This is a read-only property and cannot be used to manipulate child
nodes; use the methods appendChild, insertBefore, and removeNode to
manipulate child nodes.

Player

Flash 5 or later.

XML.removeNode
Syntax

myXML.removeNode();

Arguments

None.

Description

Method; removes the specified XML object from its parent.

Player

Flash 5 or later.
Chapter 7414

XML.send
Syntax

myXML.send(url);
myXML.send(url, window);

Arguments

url The destination URL for the specified XML object.

window The browser window to display data returned by the server: _self
specifies the current frame in the current window, _blank specifies a new window,
_parent specifies the parent of the current frame, and _top specifies the top-level
frame in the current window.

Description

Method; encodes the specified XML object into a XML document and sends it to
the specified URL using the POST method.

Player

Flash 5 or later.

XML.sendAndLoad
Syntax

myXML.sendAndLoad(url,targetXMLobject);

Arguments

url The destination URL for the specified XML object. The URL must be in
the same subdomain as the URL where the movie was downloaded from.

targetXMLobject An XML object created with the XML constructor method
that will receive the return information from the server.

Description

Method; encodes the specified XML object into a XML document, sends it to the
specified URL using the POST method, downloads the server’s response and then
loads it into the targetXMLobject specified in the arguments. The server
response is loaded in the same manner used by the load method.

Player

Flash 5 or later.

See also

XML.load
ActionScript Dictionary 415

XML.status
Syntax

myXML.status;

Arguments

None.

Description

Property; automatically sets and returns a numeric value indicating whether an
XML document was successfully parsed into an XML object. The following is a
list of the numeric status codes and a description of each:

• 0 No error; parse completed successfully.

• -2 A CDATA section was not properly terminated.

• -3 The XML declaration was not properly terminated.

• -4 The DOCTYPE declaration was not properly terminated.

• -5 A comment was not properly terminated.

• -6 An XML element was malformed.

• -7 Out of memory.

• -8 An attribute value was not properly terminated.

• -9 A start-tag was not matched with an end-tag.

• -10 An end-tag was encountered without a matching start-tag.

Player

Flash 5 or later.
Chapter 7416

XML.toString
Syntax

myXML.toString();

Arguments

None.

Description

Method; evaluates the specified XML object, constructs a textural representation
of the XML structure including the node, children, and attributes, and returns the
result as a string.

For top-level XML objects (those created with the constructor), XML.toString
outputs the document's XML declaration (stored in XML.xmlDecl), followed by
the document's DOCTYPE declaration (stored in XML.docTypeDecl), followed by
the text representation of all XML nodes in the object. The XML declaration is
not output if XML.xmlDecl is undefined. The DOCTYPE declaration is not output if
XML.docTypeDecl is undefined.

Player

Flash 5 or later.

Example

The following code is an example of the XML.toString method:

node = new XML("<h1>test</h1>");
trace(node.toString());
sends
<H1>test</H1>
to the output window

See also

XML.xmlDecl
XML.docTypeDecl
ActionScript Dictionary 417

XML.xmlDecl
Syntax

myXML.xmlDecl;

Arguments

None.

Description

Property; sets and returns information about a document's XML declaration.
After the XML document is parsed into an XML object, this property is set using
the text of the document’s XML declaration. This property is set using a string
representation of the XML declaration, not an XML node object. If no XML
declaration was encountered during a parse operation, the property is set to
undefined. XML.toString outputs the contents of XML.xmlDecl before any other
text in the XML object. If XML.xmlDecl contains the undefined type, no XML
declaration is output.

Player

Flash 5 or later.

Example

The following example uses XML.xmlDecl to set the XML document declaration
for an XML object:

myXML.xmlDecl = "<?xml version=\"1.0\" ?>";

See also

XML.toString
XML.docTypeDecl

XMLSocket (object)
The XMLSocket object implements client sockets that allow the computer
running the Flash Player to communicate with a server computer identified by an
IP address or domain name.
Chapter 7418

Using the XMLSocket object

To use the XMLSocket object, the server computer must run a daemon
that understands the protocol used by the XMLSocket object. The protocol
is as follows:

• XML messages are sent over a full-duplex TCP/IP stream socket connection.

• Each XML message is a complete XML document, terminated by a zero byte.

• An unlimited number of XML messages can be sent and received over a single
XMLSocket connection.

The XMLSocket object is useful for client-server applications that require low
latency, such as real-time chat systems. A traditional HTTP-based chat solution
frequently polls the server and downloads new messages using an HTTP request.
In contrast, an XMLSocket chat solution maintains an open connection to the
server, which allows the server to immediately send incoming messages without a
request from the client.

Setting up a server to communicate with the XMLSocket object can be
challenging. If your application does not require real-time interactivity, use the
loadVariables action, or Flash’s HTTP-based XML server connectivity
(XML.load, XML.sendAndLoad, XML.send), instead of the XMLSocket object.

To use the methods of the XMLSocket object, you must first use the constructor,
new XMLSocket, to create a new XMLSocket object.

XMLSocket and security

Because the XMLSocket object establishes and maintains an open connection to
the server, the following restrictions have been placed on the XMLSocket object
for security reasons:

• The XMLSocket.connect method can connect only to TCP port numbers
greater than or equal to 1024. One consequence of this restriction is that
the server daemons that communicate with the XMLSocket object must also
be assigned to port numbers greater than or equal to 1024. Port numbers
below 1024 are often used by system services such as FTP, Telnet, and HTTP,
thus barring the XMLSocket object from these ports. The port number
restriction limits the possibility that these resources will be inappropriately
accessed and abused.

• The XMLSocket.connect method can connect only to computers in the same
subdomain where the SWF file (movie) resides. This restriction does not apply
to movies running off a local disk. (This restriction is identical to the security
rules for loadVariables, XML.sendAndLoad, and XML.load.)
ActionScript Dictionary 419

Method summary for the XMLSocket object

Constructor for the XMLSocket object

Syntax

new XMLSocket();

Arguments

None.

Description

Constructor; creates a new XMLSocket object. The XMLSocket object is not
initially connected to any server. You must call the XMLSocket.connect method
to connect the object to a server.

Player

Flash 5 or later.

Example

myXMLSocket = new XMLSocket();

See also

XMLSocket.connect

Method Description

close Closes an open socket connection.

connect Establishes a connection to the specified server.

onClose A callback function that is invoked when an XMLSocket
connection is closed.

onConnect A callback function that is invoked when an XMLSocket
connection is established.

onXML A callback function that is invoked when an XML object arrives
from the server.

send Sends an XML object to the server.
Chapter 7420

XMLSocket.close
Syntax

myXMLSocket.close();

Arguments

None.

Description

Method; closes the connection specified by XMLSocket object.

Player

Flash 5 or later.

See also

XMLSocket.connect

XMLSocket.connect
Syntax

myXMLSocket.connect(host, port);

Arguments

host A fully qualified DNS domain name, or a IP address in the form
aaa.bbb.ccc.ddd. You can also specify null to connect to the host server on which
the movie resides.

port The TCP port number on the host used to establish a connection. The
port number must be 1024 or higher.

Description

Method; establishes a connection to the specified Internet host using the specified
TCP port (must be 1024 or higher), and returns true or false depending on
whether a connection is successfully established. If you don’t know the port
number of your Internet host machine, contact your network administrator. If
the Flash Netscape plug-in or ActiveX control is being used, the host specified in
the argument must have the same subdomain as the host from where the movie
was downloaded.

If you specify null for the host argument, the host contacted will be the host
where the movie calling XMLSocket.connect resides. For example, if the movie
was downloaded from http://www.yoursite.com, specifying null for the host
argument is the same as entering the IP address for www.yoursite.com.

If XMLSocket.connect returns a value of true, the initial stage of the connection
process is successful; later, the XMLSocket.onConnect method is invoked to
determine whether the final connection succeeded or failed. If
XMLSocket.connect returns false, a connection could not be established.
ActionScript Dictionary 421

Player

Flash 5 or later.

Example

The following example uses XMLSocket.connect to connect to the host where
the movie resides, and uses trace to display the return value indicating the
success or failure of the connection:

function myOnConnect(success) {
if (success) {

trace ("Connection succeeded!")
 } else {

trace ("Connection failed!")
}

}
socket = new XMLSocket()
socket.onConnect = myOnConnect
if (!socket.connect(null, 2000)) {

trace ("Connection failed!")
}

See also

function
XMLSocket.onConnect

XMLSocket.onClose
Syntax

myXMLSocket.onClose();

Arguments

None.

Description

Method; a callback function that is invoked only when an open connection is
closed by the server. The default implementation of this method performs no
actions. To override the default implementation, you must assign a function
containing your own actions.

Player

Flash 5 or later.

See also

function
XMLSocket.onConnect
Chapter 7422

XMLSocket.onConnect
Syntax

myXMLSocket.onConnect(success);

Arguments

success A Boolean value indicating whether a socket connection was
successfully established (true or false).

Description

Method; a callback function invoked by the Flash Player when a connection
request initiated through the XMLSocket.connect method has succeeded or
failed. If the connection succeeded, the success argument is true; otherwise
the success argument is false.

The default implementation of this method performs no actions. To override the
default implementation, you must assign a function containing your own actions.

Player

Flash 5 or later.

Example

The following example illustrates the process of specifying a replacement function
for the onConnect method in a simple chat application.

The function controls which screen the users are taken to, depending on whether
a connection is successfully established. If the connection is successfully
established, users are taken to the main chat screen on the frame labeled
startChat. If the connection is not successful, users go to a screen with
troubleshooting information on the frame labeled connectionFailed.

function myOnConnect(success) {
if (success) {

gotoAndPlay("startChat")
} else {

gotoAndStop("connectionFailed")
}

}

After creating the XMLSocket object using the constructor method, the script
installs the onConnect method using the assignment operator:

socket = new XMLSocket()
socket.onConnect = myOnConnect
ActionScript Dictionary 423

Finally, the connection is initiated. If connect returns false, the movie is sent
directly to the frame labeled connectionFailed, and onConnect is never
invoked. If connect returns true, the movie jumps to a frame labeled
waitForConnection, which is the “Please wait” screen. The movie remains on
the waitForConnection frame until the onConnect handler is invoked, which
happens at some point in the future depending on network latency.

if (!socket.connect(null, 2000)) {
gotoAndStop("connectionFailed")

} else {
gotoAndStop("waitForConnection")

}

See also

XMLSocket.connect
function
Chapter 7424

XMLSocket.onXML
Syntax

myXMLSocket.onXML(object);

Argument

object An instance of the XML object containing a parsed XML document
received from a server.

Description

Method; a callback function invoked by the Flash Player when the specified XML
object containing an XML document arrives over an open XMLSocket
connection. An XMLSocket connection may be used to transfer an unlimited
number of XML documents between the client and the server. Each document is
terminated with a zero byte. When the Flash Player receives the zero byte, it parses
all of the XML received since the previous zero byte, or since the connection was
established if this is the first message received. Each batch of parsed XML is
treated as a single XML document and passed to the onXML method.

The default implementation of this method performs no actions. To override
the default implementation, you must assign a function containing actions
that you define.

Player

Flash 5 or later.

Example

The following function overrides the default implementation of the onXML
method in a simple chat application. The function myOnXML instructs the chat
application to recognize a single XML element, MESSAGE, in the following format:

<MESSAGE USER="John" TEXT="Hello, my name is John!" />.

The onXML handler must first be installed in the XMLSocket object as follows:

socket.onXML = myOnXML;

The function displayMessage is assumed to be a user-defined function that
displays the message received to the user.

function myOnXML(doc) {
var e = doc.firstChild;
if (e != null && e.nodeName == "MESSAGE") {

displayMessage(e.attributes.user, e.attributes.text);
}

}

See also

function
ActionScript Dictionary 425

XMLSocket.send
Syntax

myXMLSocket.send(object);

Arguments

object An XML object or other data to transmit to the server.

Description

Method; converts the XML object or data specified in the object argument to a
string and transmits it to the server, followed by a zero byte. If object is an XML
object, the string is the XML textual representation of the XML object. The send
operation is asynchronous; it returns immediately, but the data may be
transmitted at a later time. The XMLSocket.send method does not return a
value indicating whether the data was successfully transmitted.

If the myXMLSocket object is not connected to the server (using
XMLSocket.connect), the XMLSocket.send operation will fail.

Player

Flash 5 or later.

Example

The following example illustrates how you could specify a user name and
password to send the XML object myXML to the server:

var myXML = new XML();
var myLogin = myXML.createElement("login");
myLogin.attributes.username = usernameTextField;
myLogin.attributes.password = passwordTextField;
myXML.appendChild(myLogin);
myXMLSocket.send(myXML);

See also

XMLSocket.connect
Chapter 7426

_xmouse
Syntax

instancename._xmouse

Arguments

instancename The name of a movie clip instance.

Description

Property (read-only); returns the x coordinate of the mouse position.

Player

Flash 5 or later.

See also

Mouse (object)
_ymouse

_xscale
Syntax

instancename._xscale
instancename._xscale = percentage;

Arguments

percentage A percentage value specifying the percentage for horizontally
scaling the movie. The default value is 100.

instancename The name of a movie clip instance.

Description

Property; determines the horizontal scale (percentage) of the movie clip as
applied from the registration point of the movie clip. The default registration
point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which
are defined in whole pixels. For example, if the parent movie clip is scaled to 50%,
setting the _x property moves an object in the movie clip by half the number of
pixels as it would if the movie were at 100%.

Player

Flash 4 or later.

See also

_xscale
ActionScript Dictionary 427

_y
Syntax

instancename._y
instancename._y = integer;

Arguments

integer The local y coordinate of the movie clip.

instancename The name of a movie clip instance.

Description

Property; sets the y coordinate of movie relative to the local coordinates of the
parent movie clip. If a movie clip is in the main Timeline, then its coordinate
system refers to the upper left corner of the Stage as (0, 0). If the move clip is
inside another movie clip that has transformations, the movie clip is in the local
coordinate system of the enclosing movie clip. Thus, for a movie clip rotated 90°
counterclockwise, the movie clip's children inherit a coordinate system that is
rotated 90° counterclockwise. The movie clip's coordinates refer to the
registration point position.

Player

Flash 3 or later.

See also

_yscale

_ymouse
Syntax

instancename._ymouse

Arguments

instancename The name of a movie clip instance.

Description

Property (read-only); indicates the y coordinate of the mouse position.

Player

Flash 5 or later.

See also

Mouse (object)
_xmouse
Chapter 7428

_yscale
Syntax

instancename._yscale
instancename._yscale = percentage;

Arguments

percentage A percentage value specifying the percentage for vertically scaling
the movie. The default value is 100.

instancename The name of a movie clip instance.

Description

Property; sets the vertical scale (percentage) of the movie clip as applied from the
registration point of the movie clip. The default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which
are defined in whole pixels. For example, if the parent movie clip is scaled to 50%,
setting the _x property moves an object in the movie clip by half the number of
pixels as it would if the movie were at 100%.

Player

Flash 4 or later.

See also

_x
_y
ActionScript Dictionary 429

Chapter 7430

A

APPENDIX A

. .. .
Operator Precedence and Associativity

Operator List
This table lists all of Action Script operators and their associativity, from highest
to lowest precedence.

Operator Description Associativity

Highest Precedence

+ Unary plus Right to left

- Unary minus Right to left

~ Bitwise one’s complement Right to left

! Logical NOT Right to left

not Logical NOT (Flash 4 style) Right to left

++ Post-increment Left to right

-- Post-decrement Left to right

() Function call Left to right

[] Array element Left to right

. Structure member Left to right

++ Pre-increment Right to left

-- Pre-decrement Right to left

new Allocate object Right to left

delete Deallocate object Right to left
431

typeof Type of object Right to left

void Returns undefined value Right to left

* Multiply Left to right

/ Divide Left to right

% Modulo Left to right

+ Add Left to right

add String concatenation (formerly &) Left to right

- Subtract Left to right

<< Bitwise Left Shift Left to right

>> Bitwise Right Shift Left to right

>>> Bitwise Right Shift (Unsigned) Left to right

< Less than Left to right

<= Less than or equal to Left to right

> Greater than Left to right

>= Greater than or equal to Left to right

lt Less than (string version) Left to right

le Less than or equal to (string version) Left to right

gt Greater than (string version) Left to right

ge Greater than or equal to (string version) Left to right

== Equal Left to right

!= Not equal Left to right

eq Equal (string version) Left to right

ne Not equal (string version) Left to right

& Bitwise AND Left to right

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

and Logical AND (Flash 4) Left to right

Operator Description Associativity
Appendix A432

|| Logical OR Left to right

or Logical OR (Flash 4) Left to right

?: Conditional Right to left

= Assignment Right to left

“*=, /=, %=, +=, -=,
&=, |=, ^=, <<=, >>=,
>>>=”

Compound assignment Right to left

, Multiple evaluation Left to right

Lowest Precedence

Operator Description Associativity
Operator Precedence and Associativity 433

Appendix A434

B

APPENDIX B

. .. .
Keyboard Keys and Key Code Values

The following tables list all of the keys on a standard keyboard and the
corresponding key code values that are used to identify the keys in ActionScript.
For more information, see the description of the Key object in Chapter 7,
“ActionScript Dictionary.”

Letters A to Z and standard numbers 0 to 9

Letter or number key Key code

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76
435

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

 0 48

 1 49

 2 50

 3 51

 4 52

 5 53

 6 54

 7 55

 8 56

 9 57

Letter or number key Key code
Appendix B436

Keys on the numeric keypad

Numeric keypad key Key code

Numbpad 0 96

Numbpad1 97

Numbpad 2 98

Numbpad 3 99

Numbpad 4 100

Numbpad 5 101

Numbpad 6 102

Numbpad 7 103

Numbpad 8 104

Numbpad 9 105

Multiply 106

Add 107

Enter 108

Subtract 109

Decimal 110

Divide 111
Keyboard Keys and Key Code Values 437

Function keys

Function key Key code

F1 112

F2 113

F3 114

F4 115

F5 116

F6 117

F7 118

F8 119

F9 120

F10 121

F11 122

F12 123
Appendix B438

Other keys

Key Key code

Backspace 8

Tab 9

Clear 12

Enter 13

Shift 16

Control 17

Alt 18

Caps Lock 20

Esc 27

Spacebar 32

Page Up 33

Page Down 34

End 35

Home 36

Left Arrow 37

Up Arrow 38

Right Arrow 39

Down Arrow 40

Insert 45

Delete 46

Help 47

Num Lock 144

; : 186

= + 187

- _ 189

/ ? 191

` ~ 192
Keyboard Keys and Key Code Values 439

[{ 219

\ | 220

] } 221

‘’ ‘ 222

Key Key code
Appendix B440

C

APPENDIX C

. .. .
Error Messages

The following table contains a list of error messages returned by the Flash
compiler. An explanation of each message is provided to aid you in
troubleshooting your movie files.

Error message Description

Property <property> does not exist A property that does not exist was
encountered. For example, x = _green
is invalid, because there is no _green
property.

Operator <operator> must be followed by
an operand

An operator without an operand was
encountered. For example, x = 1 +
requires an operand after the + operator.
An operator is followed by an invalid
operand. For example, trace(1+); is
syntactically incorrect.

Syntax error This message is issued whenever a
nonspecific syntax error is encountered.

Expected a field name after '.' operator You must specify a valid field name when
using the object.field syntax.

Expected <token> An invalid or unexpected token was
encountered. For example, in the syntax
below, the token foo is not valid. The
expected token is while.
do {
 trace (i)
 } foo (i < 100)

Initializer list must be terminated by
<terminator>

An object or array initializer list is missing the
closing] or }.
441

Identifier expected An unexpected token was encountered in
place of an identifier. In the example below,
3 is not a valid identifier.
var 3 = 4;

The JavaScript '<construct>' construct is
not supported

A JavaScript construct that is not supported
by ActionScript was encountered. This
message appears if any of the following
JavaScript constructs are used: void,
switch, try, catch, or throw.

Left side of assignment operator must be
variable or property

An assignment operator was used, but the
left side of the assignment was not a legal
variable or property.

Statement block must be terminated by '}' A group of statements was declared within
curly braces, but the closing brace is missing.

Event expected An On(MouseEvent) or onClipEvent
handler was declared, but no event was
specified, or an unexpected token was
encountered where an event should appear.

Invalid event The script contains an invalid mouse or clip
event. For a list of valid mouse and clip
events, see the On(MouseEvent) and
OnClipEvent entries in the ActionScript
dictionary chapter.

Key code expected You need to specify a key code. See
Appendix B for a list of key codes.

Invalid key code The specified key code does not exist.

Trailing garbage found The script or expression parsed correctly but
contained additional trailing characters that
could not be parsed

Illegal function A named function declaration was used as
an expression. Named function declarations
must be statements.
Valid: function sqr (x) { return x
* x; }
Invalid: var v = function sqr (x) {
return x * x; }

Function name expected The name specified for this function is not a
valid function name.

Parameter name expected A parameter (argument) name was expected
in a function declaration, but an unexpected
token was encountered.

'else' encountered without matching 'if' An else statement was encountered, but no
if appeared before it. You can use else
only in conjunction with an if statement.

Error message Description
Appendix C442

Scene type error The scene argument of a gotoAndPlay,
gotoAndStop, or ifFrameLoaded action
was of the wrong type. The scene argument
must be a string constant.

Internal error An internal error occurred in the ActionScript
compiler. Please send the FLA file that
generated this error to Macromedia, with
detailed instructions on how to reproduce
the message.

Hexadecimal digits expected after 0x The sequence 0x was encountered, but the
sequence was not followed by valid
hexadecimal digits.

Error opening #include file There was an error opening a file included
with the include directive. The error may
have occurred because the file was not
present or because of a disk error.

Malformed #include directive An include directive was not written
correctly. An include directive must use
the following syntax:
#include "somefile.as"

Multi-line comment was not terminated A multi-line comment started with /*is
missing the closing */ tag.

String literal was not properly terminated A string literal started with an opening
quotation mark (single or double) is missing
the closing quotation mark.

Function <function> takes <count>
parameters

A function was called, but an unexpected
number of parameters were encountered.

Property name expected in GetProperty The getProperty function was called, but
the second argument was not the name of a
movie clip property.

Parameter <parameter> cannot be declared
multiple times

A parameter name appeared multiple times
in the parameter list of a function declaration.
All parameter names must be unique.

Variable <variable> cannot be declared
multiple times

A variable name appeared multiple times in a
var statement. All variable names in a single
var statement must be unique.

‘on’ handlers may not be nested within
other ‘on’ handlers

An on handler was declared inside another
on handler. All on handlers must appear at
the top level of an action list.

Statement must appear within on handler In the actions for a button instance, a
statement was declared without a
surrounding on block. All actions for a button
instance must appear inside an on block.

Error message Description
Error Messages 443

Statement must appear within
onClipEvent handler

In the actions for a movie clip instance, a
statement was declared without a
surrounding onClipEvent block. All
actions for a movie clip instance must
appear inside an onClipEvent block.

Mouse events are permitted only for
button instances

A button event handler was declared in a
frame action list or a movie clip instance’s
action list. Button events are permitted only
in the action lists of button instances.

Clip events are permitted only for movie
clip instances

A clip event handler was declared in a frame
action list or a button instance’s action list.
Clip events are permitted only in the action
lists of movie clip instances.

Error message Description
Appendix C444

INDEX

A

absolute target path 104
accessing

methods 69
object properties 57

actions 19
assigning to control movies 114
assigning to frames 35
assigning to objects 33
basic 79
button parameters 36
changing parameters 26
compared to methods 112
context-sensitive help 10
deleting 26
enabling simple 147
exporting 30
frame actions 35
interactivity 79
listed 58
new features 8
printing 30
reordering 26
repeating 61
selecting 26
targeting movie clips 111
testing 33
trace 156
with target paths 59

Actions list, resizing 26
Actions panel 24

categories 25
displaying 24
editing mode 24
Normal Mode, Toolbox list 25
options 29
ActionScript
compared to JavaScript 7
editing with text editor 27
Flash 4 75
Flash 4 compared to Flash 5 8
JavaScript support 8
new features 7
scripting 12
supported Flash 4 features 77
syntax 37
terminology 19

ActiveX controls 144
displaying status 150

adding notes 41
animated symbols 45
arguments 19

in parentheses 40
passing to functions 66

array access operators 57
Ascii method 84
ASCII values 84
assigned functions 20
assignment operators 56

compound 56
associativity, operators 52
asynchronous actions 129
attaching movie clips 118
attaching sounds 91
attachMovie method 111
attachMovieClip method 118

arguments 118
attachSound method 90
445

B

balance (sound), controlling 93
behaviors 14
bitwise operators 55
Boolean values 44

comparing 54

C

calling 45
object methods 70

calling methods 45
capitalization 40
capturing keypresses 84
case-sensitivity

keywords 40
strings 43

CGI scripts, standard format 130
character sequences 43
characteristics 14
checklist, script 147
childNode 131
classes 14

defined 19
clip parameters

assigning 119
defining 119
setting 122
setting Smart Clip 122

Clip Parameters panel, replacing with custom
interface 123

collecting data 125
collisions

between movie clip and Stage point 95
between movie clips 95
detecting 94

Color object 88
color values, setting 88
Colored Syntax command 31
combining operations 56
comments

sample 41
syntax 41
syntax color 31, 41

communicating, between Timelines 102
communicating with the Flash Player 141
concatenating strings 43
conditional statements 17

conditions, checking for 60
constants

defined 19
syntax 42

construction functions, sample 14
constructor functions, sample 19
controlling movie clips, methods 111
controlling movies, requirements 108
controlling sound 90
Core JavaScript Guide 7
counters, repeating action with 61
creating, Smart Clips 119
creating objects 69
creating passwords 128
custom cursors, creating 80
custom functions 65
custom interface 119

creating 123
xch movie clip 124

custom objects 72

D

data types
Boolean 44
defined 19
movie clips 45
number 44
objects 45
rules 42

Debugger
activating in Web browser 149
display movie clips 150
enabling 149
Flash Debug Player 148
movie properties 153
password 149
status bar 150
using 148
variables 150
Watch list 152

declaring variables 49
deleting actions 26
detecting collisions 94
dialog boxes in forms 138
dimming Flash Player context menu 142
displaying, Flash Player context menu 142
dot operators 57
Index446

dot syntax 38
target paths 105

Drag Movie Clip action 117
dragging movie clips, evaluating 117
droptarget property 117
duplicateMovieClip action 102
duplicating movie clips 117
dynamic text 86

E

ECMA-262 specification 7
tellTarget action 112

editing modes
preference 28
switching 28

editing scripts
externally 29
mode 28

Enable Simple Buttons 147
Enable Simple Frame Actions 147
equality operators 56
errors

checking syntax 31
messages 32
name collision 48

escape sequences 43
European Computers Manufacturers Association

(ECMA) 7
events, defined 19
executing application from projector 142
executing operators

by precedence 52
order by association 52

execution order 15
controlling 18

Expert Mode 27
calling function 63

exporting actions 30
exporting to Flash 4 77
expressions

about 51
assigning multiple variables 56
comparing values 53
defined 19

Extensible Markup Language 131
external editors 29

F

Flash 4 files, opening 75
Flash 5

creating Flash 4 content 77
Flash Debug Player 148
Flash Help, actions 10
Flash Player

communicating with 141
dimming context menu 142
displaying context menu 142
displaying full-screen 142
displaying type 150
exporting version 32
methods 125, 144
normal menu view 142
scaling movies to 142

forms
creating 125, 137
required elements 137
search 138
variables 139
verifying data 139

frame actions
assigning 35
assigning to keyframes 35
in conflicting layers 147
placement 35

frames, assigning actions to 35
fscommand action 125

commands and arguments 142
communicating with Director 143
using 141

functions
calling 67
constructor 14
custom 65
defined 20
defining 65
local variables in 66
passing arguments to 66
predefined 63
returning values 67
rules 63
sample 19
Index 447

G

getBounds method 111
getBytesLoaded method 111
getBytesTotal method 111
getCode method 85
getting information from remote files 126
getting mouse position 82
getURL action 126

communicating with server-side scripts 130
search form 138

global variables 48
globalToLocal method 111
grouping statements 39

H

handlers
checking for XML data 129
defined 20

hard references 51
hierarchical addresses 21
hierarchy

inheritance 74
movie clip 99
parent-child movie clips 100

highlighting syntax 31
hitTest action, sample 23
hitTest method 94

controlling movies 111
HTTP protocol 126

communicating with server-side scripts 130
HTTP requests, permitting 128
HTTPS protocol 126

I

identifiers
defined 20
with values 21

if statements 17, 60
importing ActionScript 30
information, passing between movie 126
inheritance, creating 74
input text 86
input text fields, in forms 137
Insert Target Path button 108
inserting target paths 108
instance names

assigning 59
defined 20
movie clips 15
setting dynamically 57

instances
copying 14
defined 20

instantiaating objects 69
interactivity

complex 80
creating 79
forms 137

interface elements
custom 119
Smart Clips 119

ISO-8859-1 character set 8

J

JavaScript
alert statement 156
compared to ActionScript 7
Developer Central 7
editing 27
international standard 7
sending messages to 142
supported language 8
with statement 102
Index448

K

key codes, getting 84
Key object 84
keyboard controls 85
keyframes, assigning frame actions 35
keypresses, capturing 84
keywords

case-sensitive 40
defined 20
listed 41
syntax color 31

L

levels 60
absolute path 104
hierarchy 99
loading 115
loading movies into 98
naming in target path 105

linking movie clips 118
List Objects command 155
List Variables command 155
LiveConnect 144
loaded data, checking for 129
loaded movies

controlling 108
identifying 60

loading data, security 127
loadMovie action 126

checking for loaded data 129
communicating with server-side scripts 130
levels 98

loadVariables action 126
checking for loaded data 129
communicating with server-side scripts 130

local variables 48
in functions 66
sample 48

localToGlobal method 111
logical branch 17
logical operators 54
looping, children objects 62
looping actions 61

M

Macromedia Director, communicating with 143
manipulating numbers 44
maxscroll property 86
message box, displaying 143
methods 14, 45

accessing 69
assigning 114
compared to actions 112
defined 20
invoking 112
object 68
targeting multiple Timelines 113

MIME format application/
x-www-urlformencoded 130

mouse position, getting 82
movie clips

about 97
attaching 118
changing properties in Debugger 153
changing visibility 12
controlling 108
data type 45
Debugger display 150
defining clip parameters 119
detecting collisions 94
displaying hierarchy 99
displaying properties 153
dragging 117
duplicating 15, 117
exchange 124
giving instance name 59
graphic representation 14
hierarchical relationship 100
inserting target path 26
instance names 15
listing objects 155
removing 117
sharing 118

Movie Explorer 146
display 104

MovieClip object
about 15
controlling movies 111

MovieClip objects, using 71
moviename_DoFSCommand 142
Index 449

movies
controlling in Flash Player 144
listing variables 155
loading additional 115
maintaining original size 142
passing information between 126
replacing with loaded movie 115
scaling to Flash Player 142
securing 127
testing in browser 146
unloading 115

moving clips, looping children 62
multidimensional arrays 57

N

name collisions 48
names 20
naming conventions 146
naming variables 46
navigation, controlling 79
Netscape DevEdge Online 7
Netscape plug-in 150
new operator 69
nodes 131
Normal Mode 25

calling function 64
numbers 44

converting to 32-bit integers 55
numeric operators 53

O

Object Actions panel 22
object initializer operator 69
object methods, calling 70
object properties

accessing 70
object-oriented scripting 14
objects 14

assigning actions 33
creating 69
creating custom 73
custom 72
data type 45
defined 20
predefined 68

onClipEvent(enterFrame), sample 23

onClipEvent(load), sample 23
opening, Flash 4 files 75
opening message box 143
operators

array access 57
assignment 56
associativity 52
bitwise 55
combining with values 51
comparison 53
defined 20
dot 57
equality 56
logical 54
numeric 53
string 54

Output window
List Objects command 155
List Variables command 155
options 154
using 154

P

parameters
arguments and 66
changing 26
displaying 34
entering 26
passing to functions 66

Parameters fields 26
_parent alias 106
parent-child relationships 100
passing values

by content 49
by reference 50

passwords
creating 128
Debugger 149

placeholders 19
planning scripts 13
ports, XMLSocket connection 128
predefined functions 63

listed 63
predefined objects, listed 68
preferences, editing mode 28
Index450

primitive data types 42
Flash 4 77

printing actions 30
projectors, executing application 142
properties 14

collections 20
defined 21
syntax color 31
unchanging 42

Properties tab 153
prototype property 74

R

reference data types 42
references, permanent 51
referencing variables 48
relative target path 104
remote files, communicating with 126
remote sites, continuous connection 135
removeMovieClip action 117
removing

loaded movies 115
movie clips 117

reordering actions 26
repeating actions 61
reserved words 20

listed 41
this 23

RGB method 88
RRB Color Value List 431

S

sample movie 22
saving scripts 146
Script window, changing font 29
scripting ActionScript 12
scripts

commenting 146
controlling execution 18
controlling flow 60
debugging 148
declaring variables 49
execution order 15
flow 15
guidelines 145
importing 30

scripts (continued)
planning 13
sample 22
searching 30
troubleshooting 145
writing 37

scroll property 86
scrolling text fields 86
search fields 138
security 127

standard HTML 128
sending information

to remote files 126
URL encoded format 126
via TCP/IP socket connection 126
XMLformat 126

server-side scripts
languages 126
XML format 132

set variable action, verifying data 139
setPan method 90
setTransform method 88
setVolume method 90
Shift-JIS character set 8
Show Deprecated Syntax command 32
slash syntax 39

target paths 105
Smart Clips

creating 119
setting clip parameters 122

socket connections 135
sample script 136

soft references 51
Sound object 90
sounds

attaching 91
balance control 93
creating volume controls 90

special characters 43
statements

grouping 39
logical branches 17
reordering 26
setting as expressions 147
terminating 39

status bar, Debugger 150
string operators 54
Index 451

strings 43
escaping characters 43
syntax color 31

Submit button 138
swapDepths method 111
Symbol Linkage Properties dialog box 118
syntax

case-sensitivity 40
curly braces 39
dot 38
parentheses 40
rules 37
semicolon 39
slash 39

syntax errors
checking 31
highlighting 32
identifying 31

syntax highlighting 31
deprecated 32
turning on and off 31

T

target paths 104
defined 21
entering 60
expression 110
inserting 26
level names 105
specifying 59, 108

targeting
duplicateMovieClip action 102

targetPath function 110
TCP/IP connection

sending information 126
with XMLSocket object 135

terminating statements 39
terms, defined 19
Test Movie command 33, 146
testing

movies 146
scripts 146
variable values 49

testing actions 33
testing frame actions 36
test-movie mode 147
text, searching for in scripts 30

text fields 125
scrolling 86

this 23
current Timeline alias 106

Timelines
communicating between 102
controlling 111
multiple 98
parent alias 106
targeting with multiple actions 113

Toolbox list, resizing 26
troubleshooting

checklist 147
guidelines 145
listing objects 155
listing variables 155
overview 145
using the Output window 154
with trace action 156

typing variables 47

U

unloadMovie action 115
URL subdomains 127

V

values, manipulating in expressions 51
variables

absolute path 152
assigning multiple 56
changing values in Debugger 151
converting to XML 133
declaring 49
defined 21
determining type 47
hidden 139
in forms 139
loading from remote files 126
modifying in Debugger 150
naming 46
naming meaningfully 146
passing content 49
passing with Smart Clips 119
referencing value 50
removing from Watch list 152
rules 46
Index452

variables (continued)
scoping 48
sending to remote files 126
setting dynamically 57
testing 49
tracking values with text fields 146
using in scripts 49
verifying 139

Variables tab 150
VBScript 27
verifying entered data 139

sample script 140
volume

controls 90
sliding control 92

W

Watch list, Debugger 152
Web applications

continuous connection 135
integrating Flash with 125

with action 102
targeting multiple Timelines 113

wrapper action 9
writing scripts 37

X

xch instance name 124
XML 131

hierarchy 131
in server-side scripts 132
sample variable conversion 132
sending information via TCP/IP socket 126
sending information with XML methods 126

XML DOM 131
XML object methods 132
XMLSocket object

checking for data 129
methods 135
using 135
Index 453

	Contents
	Getting Started
	What’s new in Flash 5 ActionScript
	Differences between ActionScript and JavaScript
	Text editing
	Dot syntax
	Data types
	Local variables
	User-defined functions
	Predefined objects
	Clip actions
	New actions
	Smart Clips
	Debugger
	XML support

	Using Flash Help for actions

	Understanding ActionScript
	About scripting in ActionScript
	About planning and debugging scripts
	About object-oriented scripting
	About the MovieClip object
	How scripts flow
	Controlling when ActionScript runs

	ActionScript terminology
	Deconstructing a sample script
	Using the Actions panel
	Normal Mode
	Expert Mode
	Switching between editing modes
	Using an external editor
	Choosing Actions panel options
	Highlighting and checking syntax
	About error highlighting

	Assigning actions to objects
	Assigning actions to frames

	Writing Scripts with ActionScript
	Using ActionScript’s syntax
	Dot syntax
	Slash syntax
	Curly braces
	Semicolons
	Parentheses
	Uppercase and lowercase letters
	Comments
	Keywords
	Constants

	About data types
	String
	Number
	Boolean
	Object
	Movie clip

	About variables
	Naming a variable
	Typing a variable
	Scoping a variable
	Variable declaration
	Using variables in a script

	Using operators to manipulate values in�expressions
	Operator precedence
	Operator associativity
	Numeric operators
	Comparison operators
	String operators
	Logical operators
	Bitwise operators
	Equality and assignment operators
	Dot and array access operators

	Using actions
	Writing a target path

	Controlling flow in scripts
	Using "if" statements
	Repeating an action

	Using predefined functions
	Calling a function

	Creating custom functions
	Defining a function
	Passing arguments to a function
	Using local variables in a function
	Returning values from a function
	Calling a function

	Using predefined objects
	Creating an object
	Accessing object properties
	Calling object methods
	Using the MovieClip object
	Using the Array object

	Using custom objects
	Creating an object
	Creating inheritance

	Opening Flash 4 files
	Using Flash 5 to create Flash 4 content

	Creating Interaction with ActionScript
	Creating a custom cursor
	Getting the mouse position
	Capturing keypresses
	Creating a scrolling text field
	Setting color values
	Creating sound controls
	Detecting collisions

	Working with Movie Clips
	About multiple Timelines
	About the hierarchical relationship of Timelines
	Sending messages between Timelines
	About absolute and relative target paths
	Specifying target paths

	Using actions and methods to control�Timelines
	About methods versus actions
	Using multiple methods or actions to target a Timeline
	Assigning an action or method
	Loading and unloading additional movies
	Changing movie clip position and appearance
	Dragging movie clips
	Duplicating and removing movie clips
	Attaching movie clips

	Creating smart clips
	Defining clip parameters
	Setting clip parameters
	Creating a custom interface

	Integrating Flash with Web Applications
	Sending and loading variables to and from a�remote file
	About security
	Checking for loaded data
	Using loadVariables, getURL, and loadMovie
	About XML
	Using the XML object
	Using the XMLSocket�object

	Creating forms
	Creating a search form
	Using variables in forms
	Verifying entered data

	Sending messages to and from the Flash�Player
	Using fscommand
	About Flash Player methods

	Troubleshooting ActionScript
	Authoring and troubleshooting guidelines
	Using good authoring practices
	Using a troubleshooting checklist

	Using the Debugger
	Enabling debugging in a movie
	About the status bar
	About the display list
	Displaying and modifying variables
	Using the Watch list
	Displaying movie properties and changing editable properties

	Using the Output window
	Using List Objects
	Using List Variables
	Using trace

	ActionScript Dictionary
	Sample entry for most ActionScript elements
	Entry title

	Sample entry for objects
	Entry title
	Method and property summary tables
	Constructor
	Method and property listings

	Contents of the dictionary
	–– (decrement)
	++ (increment)
	! (logical NOT)
	!= (inequality)
	% (modulo)
	%= (modulo assignment)
	& (bitwise AND)
	&& (short-circuit AND)
	&= (bitwise AND assignment)
	() (parentheses)
	– (minus)
	* (multiplication)
	*= (multiplication assignment)
	, (comma)
	. (dot operator)
	?: (conditional)
	/ (division)
	// (comment delimiter)
	/* (comment delimiter)
	/= (division assignment)
	[] (array access operator)
	^(bitwise XOR)
	^= (bitwise XOR assignment)
	{} (object initializer)
	| (bitwise OR)
	|| (OR)
	|= (bitwise OR assignment)
	~ (bitwise NOT)
	+ (addition)
	+= (addition assignment)
	< (less than)
	<< (bitwise left shift)
	<<= (bitwise left shift and assignment)
	<= (less than or equal to)
	<> (inequality)
	= (assignment)
	-= (negation assignment)
	== (equality)
	> (greater than)
	>= (greater than or equal to)
	>> (bitwise right shift)
	>>= (bitwise right shift and assignment)
	>>> (bitwise unsigned right shift)
	>>>= (bitwise unsigned right shift and assignment)
	add
	_alpha
	and
	Array (object)
	Method summary for the Array object
	Property summary for the Array object
	Constructor for the Array object

	Array.concat
	Array.join
	Array.length
	Array.pop
	Array.push
	Array.reverse
	Array.shift
	Array.slice
	Array.sort
	Array.splice
	Array.toString
	Array.unshift
	Boolean (function)
	Boolean (object)
	Constructor for the Boolean object

	Boolean.toString
	Boolean.valueOf
	break
	call
	chr
	Color (object)
	Method summary for the Color object
	Constructor for the Color object

	Color.getRGB
	Color.getTransform
	Color.setRGB
	Color.setTransform
	continue
	_currentframe
	Date (object)
	Method summary for Date object
	Constructor for the Date object

	Date.getDate
	Date.getDay
	Date.getFullYear
	Date.getHours
	Date.getMilliseconds
	Date.getMinutes
	Date.getMonth
	Date.getSeconds
	Date.getTime
	Date.getTimezoneOffset
	Date.getUTCDate
	Date.getUTCDay
	Date.getUTCFullYear
	Date.getUTCHours
	Date.getUTCMilliseconds
	Date.getUTCMinutes
	Date.getUTCMonth
	Date.getUTCSeconds
	Date.getYear
	Date.setDate
	Date.setFullYear
	Date.setHours
	Date.setMilliseconds
	Date.setMinutes
	Date.setMonth
	Date.setSeconds
	Date.setTime
	Date.setUTCDate
	Date.setUTCFullYear
	Date.setUTCHours
	Date.setUTCMilliseconds
	Date.setUTCMinutes
	Date.setUTCMonth
	Date.setUTCSeconds
	Date.setYear
	Date.toString
	Date.UTC
	delete
	do...while
	_droptarget
	duplicateMovieClip
	else
	eq (equal—string specific)
	escape
	eval
	evaluate
	_focusrect
	for
	for..in
	_framesloaded
	fscommand
	function
	ge (greater than or equal to—string specific)
	getProperty
	getTimer
	getURL
	getVersion
	gotoAndPlay
	gotoAndStop
	gt (greater than —string specific)
	_height
	_highquality
	if
	ifFrameLoaded
	#include
	Infinity
	int
	isFinite
	isNaN
	Key (object)
	Method summary for the Key object
	Property summary for the Key object

	Key.BACKSPACE
	Key.CAPSLOCK
	Key.CONTROL
	Key.DELETEKEY
	Key.DOWN
	Key.END
	Key.ENTER
	Key.ESCAPE
	Key.getAscii
	Key.getCode
	Key.HOME
	Key.INSERT
	Key.isDown
	Key.isToggled
	Key.LEFT
	Key.PGDN
	Key.PGUP
	Key.RIGHT
	Key.SHIFT
	Key.SPACE
	Key.TAB
	Key.UP
	le (less than or equal to — string specific)
	length
	_level
	loadMovie
	loadVariables
	lt (less than — string specific)
	Math (object)
	Method summary for the Math object
	Property summary for the Math object

	Math.abs
	Math.acos
	Math.asin
	Math.atan
	Math.atan2
	Math.ceil
	Math.cos
	Math.E
	Math.exp
	Math.floor
	Math.log
	Math.LOG2E
	Math.LOG10E
	Math.LN2
	Math.LN10
	Math.max
	Math.min
	Math.PI
	Math.pow
	Math.random
	Math.round
	Math.sin
	Math.sqrt
	Math.SQRT1_2
	Math.SQRT2
	Math.tan
	maxscroll
	mbchr
	mblength
	mbord
	mbsubstring
	Mouse (object)
	Mouse method summary

	Mouse.hide
	Mouse.show
	MovieClip (object)
	MovieClip.attachMovie
	MovieClip.duplicateMovieClip
	MovieClip.getBounds
	MovieClip.getBytesLoaded
	MovieClip.getBytesTotal
	MovieClip.getURL
	MovieClip.globalToLocal
	MovieClip.gotoAndPlay
	MovieClip.gotoAndStop
	MovieClip.hitTest
	MovieClip.loadMovie
	MovieClip.loadVariables
	MovieClip.localToGlobal
	MovieClip.nextFrame
	MovieClip.play
	MovieClip.prevFrame
	MovieClip.removeMovieClip
	MovieClip.startDrag
	MovieClip.stop
	MovieClip.stopDrag
	MovieClip.swapDepths
	MovieClip.unloadMovie
	_name
	NaN
	ne (not equal — string specific)
	new
	newline
	nextFrame
	nextScene
	not
	null
	Number (function)
	Number (object)
	Method summary for the Number object
	Property summary for the Number object
	Constructor for the Number object

	Number.MAX_VALUE
	Number.MIN_VALUE
	Number.NaN
	Number.NEGATIVE_INFINITY
	Number.POSITIVE_INFINITY
	Number.toString
	Number.valueOf
	Object (object)
	Method summary for the Object object
	Constructor for the Object object

	Object.toString
	Object.valueOf
	onClipEvent
	on(mouseEvent)
	or
	ord
	_parent
	parseFloat
	parseInt
	play
	prevFrame
	prevScene
	print
	printAsBitmap
	_quality
	random
	removeMovieClip
	return
	_root
	_rotation
	scroll
	Selection (object)
	Method summary for the Selection object

	Selection.getBeginIndex
	Selection.getCaretIndex
	Selection.getEndIndex
	Selection.getFocus
	Selection.setFocus
	Selection.setSelection
	set
	setProperty
	Sound (object)
	Method summary for the Sound object
	Constructor for the Sound object

	Sound.attachSound
	Sound.getPan
	Sound.getTransform
	Sound.getVolume
	Sound.setPan
	Sound.setTransform
	Sound.setVolume
	Sound.start
	Sound.stop
	_soundbuftime
	startDrag
	stop
	stopAllSounds
	stopDrag
	String (function)
	" " (string delimiter)
	String (object)
	Method summary for String object
	Property summary for the String object
	Constructor for the String object

	String.charAt
	String.charCodeAt
	String.concat
	String.fromCharCode
	String.indexOf
	String.lastIndexOf
	String.length
	String.slice
	String.split
	String.substr
	String.substring
	String.toLowerCase
	String.toUpperCase
	substring
	_target
	targetPath
	tellTarget
	this
	toggleHighQuality
	_totalframes
	trace
	typeof
	unescape
	unloadMovie
	updateAfterEvent
	_url
	var
	_visible
	void
	while
	_width
	with
	_x
	XML (object)
	Method summary for the XML object
	Property summary for the XML object
	Collections summary for the XML object
	Constructor for the XML object

	XML.appendChild
	XML.attributes
	XML.childNodes
	XML.cloneNode
	XML.createElement
	XML.createTextNode
	XML.docTypeDecl
	XML.firstChild
	XML.haschildNodes
	XML.insertBefore
	XML.lastChild
	XML.load
	XML.loaded
	XML.nextSibling
	XML.nodeName
	XML.nodeType
	XML.nodeValue
	XML.onLoad
	XML.parentNode
	XML.parseXML
	XML.previousSibling
	XML.removeNode
	XML.send
	XML.sendAndLoad
	XML.status
	XML.toString
	XML.xmlDecl
	XMLSocket (object)
	Using the XMLSocket object
	XMLSocket and security
	Method summary for the XMLSocket object
	Constructor for the XMLSocket object

	XMLSocket.close
	XMLSocket.connect
	XMLSocket.onClose
	XMLSocket.onConnect
	XMLSocket.onXML
	XMLSocket.send
	_xmouse
	_xscale
	_y
	_ymouse
	_yscale

	Operator Precedence and Associativity
	Operator List

	Keyboard Keys and Key Code Values
	Letters A to Z and standard numbers 0 to 9
	Keys on the numeric keypad
	Function keys
	Other keys

	Error Messages
	Index

